CSC413/2516 Lecture 9:
Generative Models: GAN, VAE, LLMs

Bo Wang




Overview

Quiz: Which face image is fake?
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Overview

@ In generative modeling, we'd like to train a network that models a
distribution, such as a distribution over images.

@ One way to judge the quality of the model is to sample from it.

@ This field has seen rapid progress:
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Generator Networks

@ Autoregressive models explicitly predict a distribution at each step.

@ Another approach to generative modeling is to train a neural net to
produce approximate samples from the distribution.

e Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

@ The generator network computes a differentiable function G mapping
Z to an x in data space

sample x = G(z)

code vector Z
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Generator Networks

A 1-dimensional example:

input
distribution
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Generator Networks

—

unit gaussian

generative
model
(neural net)

generated distribution

true data distribution

p(x)

image space

. [(loss| ,

image space

https://blog.openai.com/generative-models/
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Generator Networks

@_..

Each dimension of the code
vector is sampled independently
from a simple distribution,
e.g. Gaussian or uniform.

\J
\J

Thisisfedtoa
(deterministic) The network
generator network. outputs an image.

This sort of architecture sounded preposterous to many of us, but
amazingly, it works.
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Generative Adversarial Networks

@ Implicit generative models learn a mapping from random noise vectors
to things that look like, e.g., images

@ The advantage of implicit generative models: if you have some
criterion for evaluating the quality of samples, then you can compute
its gradient with respect to the network parameters, and update the
network’'s parameters to make the sample a little better
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Generative Adversarial Networks

@ Implicit generative models learn a mapping from random noise vectors
to things that look like, e.g., images

@ The advantage of implicit generative models: if you have some
criterion for evaluating the quality of samples, then you can compute
its gradient with respect to the network parameters, and update the
network’'s parameters to make the sample a little better

@ The idea behind Generative Adversarial Networks (GANs): train two
different networks

e The generator network tries to produce realistic-looking samples
e The discriminator network tries to figure out whether an image came
from the training set or the generator network

@ The generator network tries to fool the discriminator network

B N C5C413/2516 Lecture 9:  Generative Models il




Generative Adversarial Networks

D(x)

t
f

X OR x = G(z)

real-world
image

discriminator

generator

code vector
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Generative Adversarial Networks

Let D denote the discriminator’s predicted probability of being data

Discriminator’s cost function: cross-entropy loss for task of classifying
real vs. fake images

JIp = Ex~p[—log D(x)] + E,[—log(1 — D(G(2)))]

@ One possible cost function for the generator: the opposite of the
discriminator's

¢ ©

Je =—-Ib
= const + E,[log(1 — D(G(z)))]

@ This is called the minimax formulation, since the generator and
discriminator are playing a zero-sum game against each other:

max min Jp
G D

CSC413/'2516 Lecture 9: Generative Models 19/1




Generative Adversarial Networks

Updating the discriminator:
D(x)

!

update the discriminator
weights using backprop
on the classification objective

X OR x = G(z)
A
real-world
image generator
A
A
VA code vector
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Generative Adversarial Networks

Updating the generator:
D(x)

backprop the derivatives,
but don't modify the
discriminator weights

flip the sign
of the derivatives

update the generator
weights using backprop
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Generative Adversarial Networks

Alternating training of the generator and discriminator:
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]
A Better Cost Function

@ We introduced the minimax cost function for the generator:
Je = E.[log(1 — D(G(z2)))]

One problem with this is saturation.

@ Recall from our lecture on classification: when the prediction is really
wrong,

e 'Logistic 4 squared error’ gets a weak gradient signal
e “Logistic 4 cross-entropy” gets a strong gradient signal

@ Here, if the generated sample is really bad, the discriminator’s
prediction is close to 0, and the generator’'s cost is flat.

B N C5C413/2516 Lecture 9:  Generative Models 23/1




.
A Better Cost Function

@ Original minimax cost:
Je = Eq[log(1 — D(G(2)))]
@ Modified generator cost:
Je = Ez[—log D(G(2))]

@ This fixes the saturation problem.

modified
cost
minimax
cost
%0 02 o4 o8 o8 10
D(G(z))
(how well it fooled
the discriminator)
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Generative Adversarial Networks

@ Since GANs were introduced in 2014, there have been hundreds of
papers introducing various architectures and training methods.

@ Most modern architectures are based on the Deep Convolutional GAN
(DC-GAN), where the generator and discriminator are both conv nets.

@ GAN Zoo: https://github.com/hindupuravinash/the-gan-zoo
e Good source of horrible puns (VEEGAN, Checkhov GAN, etc.)
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|
GAN Samples

Celebrities:

Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and variation
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GAN Samples

Bedrooms:

Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and variation
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e
GAN Samples

ImageNet object categories (by BigGAN, a much larger model with a
bunch more engineering tricks):

Brock et al., 2019. Large scale GAN training for high fidelity natural image synthesis.
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GAN Samples

@ GANSs revolutionized generative modeling by producing crisp,
high-resolution images.
@ The catch: we don't know how well they're modeling the distribution.

o Can't measure the log-likelihood they assign to held-out data.

o Could they be memorizing training examples? (E.g., maybe they
sometimes produce photos of real celebrities?)

o We have no way to tell if they are dropping important modes from the
distribution.

e See Wu et al., "On the quantitative analysis of decoder-based
generative models” for partial answers to these questions.
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.
CycleGAN

Style transfer problem: change the style of an image while preserving the
content.

Monet Z_> Photos

ebras 7> Horses Summer {_ Winter

zebra — horse

photo —*Monet : horse — zebra -

Photograph Monet Van Gogh

Data: Two unrelated collections of images, one for each style
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]
CycleGAN

@ If we had paired data (same content in both styles), this would be a
supervised learning problem. But this is hard to find.
@ The CycleGAN architecture learns to do it from unpaired data.
¢ Train two different generator nets to go from style 1 to style 2, and
vice versa.
o Make sure the generated samples of style 2 are indistinguishable from
real images by a discriminator net.
e Make sure the generators are cycle-consistent: mapping from style 1 to
style 2 and back again should give you almost the original image.
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.
CycleGAN

The discriminator tries to
distinguish generated zebra
images from real ones

Discriminator loss: GAN

\_ generator objective, i.e. negative
D log probability D assigns to the
sample being real

Real zebra image

=T T = Reconstruction loss: squared
error between the original image
and the reconstruction

Input image Generator 1 learns to map Generated sample Generator 2 learns to map Reconstruction
(real horse image) from horse images to zebra from zebra images to horse
images while preserving the images while preserving the
structure structure

Total loss = discriminator loss + reconstruction loss
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e
CycleGAN

Style transfer between aerial photos and maps:

BiGAN CoGAN CycleGAN pix2pix Ground truth
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After the break

After the break: Variational Auto-Encoder (VAE)

Jimmy Ba and Bo Wang



Autoencoders

@ An autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

@ To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

reconstruction 784 units
A
100 units decoder
A
code vector 20 units
A
100 units encoder
A
input 784 units
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Autoencoders

Why autoencoders?

@ Map high-dimensional data to two dimensions for visualization
@ Compression (i.e. reducing the file size)
@ Note: this requires a VAE, not just an ordinary autoencoder.

@ Learn abstract features in an unsupervised way so you can apply them
to a supervised task

o Unlabled data can be much more plentiful than labeled data

@ Learn a semantically meaningful representation where you can, e.g.,
interpolate between different images.
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Deep Autoencoders

@ Deep nonlinear autoencoders learn to project the data onto
a low-dimensional nonlinear manifold.

@ This manifold is the image of the decoder.

@ This is a kind of nonlinear dimensionality reduction.

2 units




Deep Autoencoders

@ Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)

real

0 / & 3 4 5 &7 8 Q ham

O /a3 4 5 L7 & Q FEw
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Deep Autoencoders

@ Some limitations of autoencoders

e They're not generative models, so they don't define a distribution
e How to choose the latent dimension?
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Variational Auto-encoder (VAE)

! zi~q(zi|xi, }) |

CSC413/2516 Lecture 10:

Decoder learns the generative process
given the sampled latent vectors.

Sampling process in the middle.

Encoder learns the distribution of latent
space given the observations.

Generative Model
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Observation Model
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Observation Model

@ Consider training a generator network with maximum likelihood.

p(x) = [ p(2)p(x|2) dz

@ One problem: if z is low-dimensional and the decoder is deterministic,
then p(x) = 0 almost everywhere!

e The model only generates samples over a low-dimensional sub-manifold
of X.

@ Solution: define a noisy observation
model, e.g.

p(x|z) = N(x; Go(z),nl),

where Gg is the function computed by
the decoder with parameters 6.
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Observation Model

o At least p(x) = [ p(z)p(x|z) dz is well-defined, but how can we
compute it?
@ Integration, according to XKCD:

DIFFERENTIATION INTEGRATION

@;-@'_. GESceL PACIONT

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10:  Generative Model




R
Observation Model

o At least p(x) = [ p(z)p(x|z)dz is well-defined, but how can we
compute it?

o The decoder function Gg(z) is very complicated, so there's no hope of
finding a closed form.

@ Instead, we will try to maximize a lower bound on log p(x).
o The math is essentially the same as in the EM algorithm from CSC411.
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Variational Inference

@ We obtain the lower bound using
Jensen’s Inequality: for a convex
function h of a random variable X,

E[A(X)] = h(E[X])

Therefore, if h is concave (i.e. —h is
convex),

E[h(X)] < h(E[X])

@ The function log z is concave.
Therefore,

E[log X] < log E[X]
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Variational Inference

@ Suppose we have some distribution g(z). (We'll see later where this
comes from.)

@ We use Jensen's Inequality to obtain the lower bound.
log p(x) = log [p(z) p(x|z) dz

= log / 4(2) z—z)p(X\Z) dz

2) E[log X] < log E[X]
> /q(Z)Iog g(—gp(x\z)] dz (Jensen’s Inequality)
= o P(z) og p(x|z
=Eq [l g q(z)] + Eq [log p(x|z)]

@ We'll look at these two terms in turn.
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Variational Inference

@ The first term we'll look at is Eq [log p(x|z)]

@ Since we assumed a Gaussian observation model,

log p(x|z) = log N'(x; Gg(z),nl)

oz | 5 o0 (5 Gala) 7|

1
= —%Hx — Gg(2)||? + const

@ So this term is the expected squared error in reconstructing x from z.
We call it the reconstruction term.
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Variational Inference

: p(z)
@ The second term is E, [Iog q(z)].

e This is just —Dk1,(q(2)| p(z)), where Dy, is the Kullback-Leibler
(KL) divergence

DkL(q(2)llp(2)) = Eq ['Og %‘

o KL divergence is a widely used measure of distance between probability
distributions, though it doesn’t satisfy the axioms to be a distance
metric.

o More details in tutorial.

e Typically, p(z) = N(0,1). Hence, the KL term encourages g to be
close to N'(0, ).
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Variational Inference

@ Hence, we're trying to maximize the variational lower bound, or
variational free energy:

log p(x) = F (6, q) = Eq [log p(x|2)] — Dkw(ql|p)-

@ The term “variational” is a historical accident: “variational inference”
used to be done using variational calculus, but this isn't how we train

VAEs.
@ We'd like to choose g to make the bound as tight as possible.
@ It's possible to show that the gap is given by:

log p(x) — F (6, q) = Dxr(q(2)[|p(z[x))-

Therefore, we'd like g to be as close as possible to the posterior
distribution p(z|x).
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@ Let's think about the role of each of the two terms.

@ The reconstruction term
Bqllog p(x(2)] = — 5 5Eqllx — Go(2)|?] + const
is minimized when g is a point mass on
I°.

z, = arg min ||x — Gg(2)
r4

@ But a point mass would have infinite KL divergence. (Exercise: check
this.) So the KL term forces g to be more spread out.
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Reparameterization Trick

@ To fit g, let's assign it a parametric form, in particular a Gaussian
distribution: g(z) = N(z; p, X), where . = (p1, ..., uk) and
¥ = diag(c?,...,0%).

@ In general, it's hard to differentiate through an expectation. But for
Gaussian g, we can apply the reparameterization trick:

Zj = Wi + Oj€j,

where €; ~ N(0,1).
@ Hence,

=2z o =7

@ This is exactly analogous to how we derived the backprop rules for
dropout
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Reparameterization Trick

Original form
| |
[ I
I I
| :
| ~q@ox)
I I
I |
I I
I I
[ I

I

: Deterministic node

. : Random node
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Reparameterization Trick

Original form Reparameterised form

|
|
|
|
:
| ~ q(z|$.x)
|
|
|
|
|
|

I
| f
I
| T
: af/aZ_] Zz = g(q}’x!e)
e
& L 9f/dg; B X ~ p(e)
= 0L/dq:
| e o e e e e e e e e e e - - | o o o o o e e e e e e e e - -
: Deterministic node %giﬂgma,goﬂgs?i]
engio,
: [Kingma and Welling 2014]
. - Random node [Rezende et al 2014]
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Amortization

@ This suggests one strategy for learning the decoder. For each training
example,

© Fit g to approximate the posterior for the current x by doing many
steps of gradient ascent on F.
@ Update the decoder parameters @ with gradient ascent on F.
@ Problem: this requires an expensive iterative procedure for every
training example, so it will take a long time to process the whole
training set.

Jimmy Ba and Bo Wang



Amortization

@ ldea: amortize the cost of inference by
learning an inference network which
predicts (p, X) as a function of x. z

@ The outputs of the inference net are p E/'/ \
and log o. (The log representation ‘ wl  logo
ensures o > 0.) X/

e If o =~ 0, then this network essentially
computes z deterministically, by way of i
L.

e But the KL term encourages o > 0,
so in general z will be noisy.

@ The notation g(z|x) emphasizes that gq X
depends on x, even though it's not
actually a conditional distribution.
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Amortization

@ Combining this with the decoder
network, we see the structure closely
resembles an ordinary autoencoder. The

inference net is like an encoder.

b

decoder

@ Hence, this architecture is known as a
variational autoencoder (VAE).

@ The parameters of both the encoder
and decoder networks are updated using
a single pass of ordinary backprop.

/
M ‘ log o
A\

@ The reconstruction term corresponds
to squared error ||x — X||2, like in an
ordinary VAE.

o The KL term regularizes the X
representation by encouraging z to be
more stochastic.

encoder

Jimmy Ba and Bo Wang



Variational Auto-encoder (VAE)

neural network

encoder

neural network

decoder

loss = ||x-%]|? + KLI NO, DT = |[x-d(z) | + KL

+N(0,1)]

Source: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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VAE - Summary

Reparam. trick
for differentiability

Computed
analytically

oy 0z = M(x), %(x)
e ~N(0,1)
Z=€0; + W,
X, = po(x | 2)

recon. loss = MSE(x, x,)

var. loss = —KL[N (p,, 0. )[IN (0, I)]

L = recon. loss + var. loss

om /blog/2018/04/29/reparameterization/
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Push x through encoder

Sample noise

Reparameterize

Push z through decoder

Compute reconstruction loss

Compute variational loss

Combine losses
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VAEs vs. Other Generative Models

@ In short, a VAE is like an autoencoder, except that it's also a
generative model (defines a distribution p(x)).

@ Unlike autoregressive models, generation only requires one forward
pass.

@ Unlike reversible models, we can fit a low-dimensional latent
representation. We'll see we can do interesting things with this...
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Latent Space Interpolations

@ You can often get interesting results by interpolating between two
vectors in the latent space:

LREERBEAD R
£+ LY P O

B AR A XN

Ha and Eck, “A neural representation of sketch drawings”
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Latent Space Interpolations

@ You can often get interesting results by interpolating between two
vectors in the latent space:

Jimmy

L T e e— |
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add
smiling
vector

subtract
smiling
vector

add
sunglass
vector

add
sunglass
vector

subtract
sunglass
vector



Latent Space Interpolations

Select a feature brush & strength and enjoy painting:

draw [femove
undo reset
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Latent Space Interpolations

@ Latent space interpolation of music:
https://magenta.tensorflow.org/music-vae

Jimmy Ba and Bo Wang
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After the break

After the break: Large Language Models (LLMs)

Jimmy Ba and Bo Wang
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Large Language Models (LLMs)

Prior work: ELMo ﬁ

ELMo (Peters et al., 2018; NAACL 2018 best paper)
® Train two separate unidirectional LMs (left-to-right and right-to-left) based on LSTMs
® Feature-based approach: pre-trained representations used as input to task-specific models
e Trained on single sentences from 1B word benchmark (Chelba et al., 2014)

Train Separate Left-to-Right and Apply as “Pre-trained
Right-to-Left LMs Embeddings”
open a bank <s> open a Existing Model Architecture
t t f f t f
| LSTM I-‘l LSTM H LST™M I 1 LSTM I——I LSTM H LST™M I T I T
t T 1 T t T L) L L
<s> open a open a bank T I T

Source: COS 597G, Dangi Chen, Princeton University
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Large Language Models (LLMs)

Prior work: OpenAl GPT

OpenAl GPT (Radford et al., 2018; released in 2018/6)

® Train one unidirectional LM (left-to-right) based on a deep Transformer decoder

® Fine-tuning approach: all pre-trained parameters are re-used & updated on downstream tasks
® Trained on 512-token segments on BooksCorpus — much longer context!

Train Deep (12-layer)

Fine-tune on
Transformer LM

Classification Task

POSITIVE
open a bank

i
Zle
[

[

I
\/
€
L

Source: COS 597G, Dangi Chen, Princeton University
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Large Language Models (LLMs)

BERT: key contributions

e [t is a fine-tuning approach based on a deep Transformer encoder

The key: learn representations based on bidirectional context

Why? Because both left and right contexts are important
to understand the meaning of words.

Example #1: we went to the river bank.
Example #2: I need to go to bank to make a deposit.

® Pre-training objectives: masked language modeling + next sentence prediction

State-of-the-art performance on a large set of sentence-level and token-level tasks

Source: COS 597G, Dangi Chen, Princeton University
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Large Language Models (LLMs)

Masked Language Modeling (MLM)

® Q: Why we can’t do language modeling with bidirectional models?

open a bank open @ bank
t t ! f t

Layer 2 )—" Layer 2 H Layer 2 I Layer 2 m Layer 2 tl Layer 2 ‘
f f f f f f

I LayTerZ }""’ LayTer2 |—-| Layer 2 I

LayTerz m LayTerZ |::1 Layer 2 ’

<s> open a <s> open @

® Solution: Mask out k% of the input words, and then predict the masked words

store gallon

t 1

the man went to [MASK] to buy a [MASK] of milk

Source: COS 597G, Dangi Chen, Princeton University




Large Language Models (LLMs)

MLM: masking rate and strategy

® Q: What is the value of k?
® They always use k = 15%.
Too little masking: computationally expensive
® Too much masking: not enough context
See (Wettig et al., 2022) for more discussion of masking rates

® Q: How are masked tokens selected?

® 15% tokens are uniformly sampled
® [s it optimal? See span masking (Joshi et al., 2020) and PMI masking (Levine et al., 2021)

Example: He [MASK] from Kuala [MASK] , Malaysia.

Note: We will see that span masking
used in T5 models soon

Source: COS 597G, Dangi Chen, Princeton University
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Large Language Models (LLMs)

MLM: 80-10-10 corruption

For the 15% predicted words,
® 80% of the time, they replace it with [MASK] token

went to the store — went to the [MASK]

® 10% of the time, they replace it with a random word in the vocabulary
went to the store — went to the running
® 10% of the time, they keep it unchanged

went to the store — went to the store

Why? Because [MASK] tokens are never seen during fine-tuning
(See Table 8 for an ablation study)

Source: COS 597G, Dangi Chen, Princeton University
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Large Language Models (LLMs)

Next Sentence Prediction (NSP)

® Motivation: many NLP downstream tasks require understanding the relationship
between two sentences (natural language inference, paraphrase detection, QA)

® NSP is designed to reduce the gap between pre-training and fine-tuning

[CLS]: a special token [SEP]: a special token used
always at the beginning to separate two segments
“
Input = [CLS] the man went to [MASK] store [SEP]

They sample two contiguous
segments for 50% of the
Label = 1snext time and another random
segment from the corpus for
50% of the time

he bought a gallon [MASK] milk [SEP]

Input = [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = notwnext

Source: COS 597G, Dangi Chen, Princeton University
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Large Language Models (LLMs)

BERT pre-training: putting together

® Vocabulary size: 30,000 workpieces (common sub-word units) (Wu et al., 2016)

word
- hat

Common

words learn

misspellings — laern

9
9
Variations 4 taaaaasty >
[ =
novelitems - Transformerify =

¢ Input embeddings:

vocab mapping
hat

learn

taa#t# aaa#t# sty
la## ern
Transformer## ify

embedding

(Image: Stanford
CS224N)

o ﬁﬂﬂ@@@n@@@mw

Token

Embeddings ICLSJ | kes play

Segment . Separate two segments
E ---- - -

Position
Embeddings

Source: COS 597G, Dangi Chen, Princeton University
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Large Language Models (LLMs)

BERT pre-training: putting together

r—_'l Add & Norm |

Feed
Forward

———

N Add & Norm )

Multi-Head
Attention
At
S S
Positional
Encoding D
Input
Embedding
I
Inputs

e BERT-base: 12 layers, 768 hidden size, 12 attention heads,
110M parameters ™ sameas OpenAl GPT

e BERT-large: 24 layers, 1024 hidden size, 16 attention
heads, 340M parameters

OpenAl GPT was trained
on BooksCorpus only!

® Training corpus: Wikipedia (2.5B) + BooksCorpus (0.8B)

® Max sequence size: 512 word pieces (roughly 256 and 256
for two non-contiguous sequences)

® Trained for 1M steps, batch size 128k

Source: COS 597G, Dangi Chen, Princeton University
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Large Language Models (LLMs)

BERT pre-training: putting together

@3 Mask LM Mask LM \
& fas *

BERT e e MLM and NSP are trained together
Ellc | el e [CLS] is pre-trained for NSP
_5_5 LNr CE: j_ir QM_ e QOther token representations are trained
@ Tok1 | ... Tok N [SEP] Tok1 | ... TokM for MLM
Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair

Pre-training

Source: COS 597G, Dangi Chen, Princeton University
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Large Language Models (LLMs)

Fine-tuning BERT

“Pretrain once, finetune many times.”

sentence-level tasks

ooEn &
BERT BERT
mlel- ElEE- & el O

BN I D e e e

Sentence 1 Sentence 2 Single Sentence
(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, SST-2, CoLA

RTE, SWAG

Source: COS 597G, Danqgi Chen, Princeton University
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Fine-tuning BERT

“Pretrain once, finetune many times.”

token-level tasks

Start/End Span

BERT

BN BN S e

Question Paragraph

(c) Question Answering Tasks:
SQUAD v1.1

Source: COS 597G, Dangi Chen, Princeton University

o L

0  BPER o
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BERT

EENEN

g B
z

I

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER
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Experimental results: GLUE

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B  MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 35k 2.5k -
| Pre-OpenAI SOTA 80.6/80.1 66.1  82.3 93.2 35.0 81.0 86.0 617 74.0|
BiLSTM+ELMo+Attn  76.4/76.1 64.8  79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 703  87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTpAsE 84.6/83.4 712 905 93.5 52.1 85.8 88.9 66.4 79.6
BERTLArGE 86.7/85.9 721 927 94.9 60.5 86.5 893 70.1 82.1

See Appendix A.4 for detailed differences between BERT and OpenAl GPT

20

Source: COS 597G, Dangi Chen, Princeton University
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hidden
#layers  size heads

t |t &

Hyperparams Dev Set Accuracy
#L #H #A LM (ppl) MNLI-m MRPC SST-2
3 768 12 5.84 77.9 798 884
6 768 3 524 80.6 82.2  90.7
6 768 12  4.68 81.9 84.8 913
12 768 12  3.99 84.4 86.7 929
12 1024 16 3.54 85.7 869 933
24 1024 16 3.23 86.6 87.8 93.7

Source: COS 597G, Dangi Chen, Princeton University

Ablation study: model sizes

The bigger, the better!
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MNLI Dev Accuracy
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Ablation study: training efficiency

— A BERTgask (Masked LM)
— ¢ BERTgask (Left-to-Right)

200

400

600

800

Pre-training Steps (Thousands)

Source: COS 597G, Dangi Chen, Princeton University

1,000

MLM takes slightly longer to
converge because it only
predicts 15% of tokens

24
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Conclusions (in early 2019)

From Jacob Devlin’s talk in 2019/1:

e |s modeling “solved” in NLP? l.e., is there a reason to come

up with novel model architectures?
o But that’s the most fun part of NLP research :(

e Personal belief: Near-term improvements in NLP
will be mostly about making clever use of “free”
data.

o Unsupervised vs. semi-supervised vs. synthetic supervised is
somewhat arbitrary.

o “Data | can get a lot of without paying anyone” vs. “Data | have to pay
people to create” is more pragmatic distinction.

25
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Conclusions (in early 2019)

From Jacob Devlin’s talk in 2019/1:

e Empirical results from BERT are great, but biggest
impact on the field is:

e With pre-training, bigger == better, without clear
limits (so far).

26
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What happened after BERT?

Lots of people are trying to understand what BERT has learned and how it works

A Primer in BERTology: What We Know About How BERT Works

Anna Rogers Olga Kovaleva Anna Rumshisky
Center for Social Data Science Dept. of Computer Science Dept. of Computer Science
University of Copenhagen University of Massachusetts Lowell University of Massachusetts Lowell
arogers@sodas.ku.dk okovalev@cs.uml.edu arum@cs.uml.edu

e Syntactic knowledge, semantic knowledge, world knowledge...
* How to mask, what to mask, where to mask, alternatives to masking..

27
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What happened after BERT?

e RoBERTa (Liu et al., 2019)
® Trained on 10x data & longer, no NSP
® Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD)

¢ Still one of the most popular models to date

e ALBERT (Lan et al., 2020)
® Increasing model sizes by sharing model parameters across layers

® less storage, much stronger performance but runs slower..

sample
¢ ELECTRA (Clark et al-, 2020) the — [MASK] —>| F-> the —> [—> original
. . . . . chef —» chef —> chef —>» —> original
® Generator R
It provides a mo.re‘effunent training cooked —> [15K] —| ey |-> ate — Dl(;tlz-rér(l:'l_ll_r';j\t)or > replaced
method by predicting 100% of tokens the —» the —»f small MLM) | e 5 > original
meal — meal —>| meal —> [—> original

instead of 15% of tokens

28

Source: COS 597G, Dangi Chen, Princeton University
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What happened after BERT?

L) BBl

Models that handle long contexts (>> 512 tokens) o
s

e Longformer, Big Bird, ... O ﬂﬂa =

O
DC
O

Multilingual BERT . -

® Trained single model on 104 languages from
Wikipedia. Shared 110k WordPiece vocabulary

H_E

(a) Random attention  (b) Window attention

||
111

1 | 1] 0 0 10 0
11 | I (5 0 [0 120

BERT extended to different domains
e SciBERT, BioBERT, FinBERT, ClinicalBERT, ...
d

0

O

| 121 |0 [ 0

INEEENE
EEEEEE

| [ [ [0 L I

Making BERT smaller to use |
m] u

® DistillBERT, TinyBERT, ... O

(¢) Global Attention (d) BIGBIRD

Image from the original paper

Source: COS 597G, Dangi Chen, Princeton University
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Q. Feature-based vs fine-tuning approaches

® Feature-based: task-specific architectures that uses pre-trained representations
as features

® Fine-tuning: introduces minimal task-specific parameters and trains on
downstream examples by simply fine-tuning all the parameters

Fine-tuning is more appealing
1) no task-specific engineering
2) re-using most pre-trained weights leads to stronger performance

31

Source: COS 597G, Dangi Chen, Princeton University
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Shifting Paradigms in NLP

Source: COS 597G, Dangi Chen, Princeton University

f 4
Word Vectors + Task
Specific —>| Multi layer RNNs
Architectures
J
/
—
4 é
Pre-trained
transformers + ————> What next?
Fine-tuning
i

Bo Wang
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Pre-training - Fine-Tuning

CIC)- Cllem])-
BERT
=] &)

=6 EEID- G =6._SEm. &
Masked Sentence A f Masked Sentence B Question ‘ Paragraph
\ Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

[Eea ][ & |-

Source: Devlin et al. 2018
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Limitations of Pre-training - Fine-Tuning (1)
Practical Issues

e Need large task-specific datasets for fine-tuning
e Collect data for task A - Fine-tune to solve task A > Repeat for task B
-> Repeat for task C » and so on ...

e End up with many “copies” of the same model

Source: COS 597G, Dangi Chen, Princeton University
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Limitations of Pre-training - Fine-Tuning (2)

Potential to exploit spurious correlations (Overfitting)

e Large models fine-tuned on very narrow task distributions

e Evidence suggests: models overfit to training distributions and

don’t generalize well outside of it (Evidence: Hendricks et al. 2020,

Yogatama et al. 2019, McCoy et al. 2019)
e Models are good on datasets, not so good at the underlying task

(Gururangan et al. 2018, Niven et al. 2019)

Source: COS 597G, Dangi Chen, Princeton University
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Limitations of Pre-training - Fine-Tuning (3)

Humans don’t need large supervised datasets

e Humans can learn from simple directives

e Allows humans to mix and match skills + switch between tasks
easily

e Hope is for NLP systems to one day function with the same
fluidity!

Source: COS 597G, Dangi Chen, Princeton University
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Addressing These Limitations

1. Scaling up 4
2. “In Context-Learning”

Source: COS 597G, Dangi Chen, Princeton University
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Size (millions of parameters)

.
>

LM Landscape pre GPT-3

Source: DistilBERT (Sanh et al.)

10000

7500

5000

Numbers of Parameters (in Millions)

MegatronLM
8300
o

NVIDIA.

® w
UNIVERSITY of WASHIN
OpenAI Gfover-
2500 GPT-2 Mega
A2 6] : Google Al 1500 1500
Transfol
OpenAl .
‘i BERT-Large Eiao MT-DNN XLM 665 RoBERTa
ELMo GPT 340 465 330 340 355 DistilBERT
94 110 b4 66
[} e . ]
08 .
Yettorr .
> S 'y o o  University )
N S S 5 S N
Y g & Q Y 7
W« » & & W N

Source: COS 597G, Dangi Chen, Princeton University
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LM Landscape with GPT-3

A : ——
Source:
https://bmk.sh/2020/05/29/GPT-3-A-Brief
-Summary/

175b params!
GPT-2 was 1.5b

340m params!

Size (billions of parameters)

10

Time

Source: COS 597G, Dangi Chen, Princeton University
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Why Scale?

e Study conducted by OpenAl - Scaling Laws for Neural Language
Models (Kaplan et al. 2020)

e Afewkey findings:
o Performance depends strongly on scale, weakly on model
shape
o Smooth power laws (v = ax*) b/w empirical performance & N -
parameters, D - dataset size, C - compute
o Transfer improves with test performance

o Larger models are more sample efficient 1

Source: COS 597G, Dangi Chen, Princeton University

Tl 5132516 Lecture 10: Generative Model




N
Large Language Models (LLMs)

Zero-shot

(0s)

1-shot
(1s)

Few-shot
(FS)

In-Context Learning

No Prompt

skicts = sticks

chiar = chair
skicts = sticks

chiar = chair
[...]

pciinc = picnic
skicts = sticks

Source: COS 597G, Dangi Chen, Princeton University

Prompt

Please unscramble the letters into
aword,and write that word:
skicts = sticks

Please unscramble the letters into
aword,and write that word:

chiar = chair

skicts = sticks

Please unscramble the letters into

a word, and write that word:

chiar = chair

["'.]. o

pciinc = picnic

skicts = sticks 15
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In-Context learning is Meta-Learning

“Learning how to learn”

e Model develops pattern recognition abilities while training, which
it applies at test time
e ‘“in-contextlearning” - using text input of a pre-trained LM as a
form of task specification
e Seenin GPT-2 (Radford et al 2019):
o Only 4% on Natural Questions
o 55F10n CoQawas 35 points behind SOTA at time
e - We need something better

18

Source: COS 597G, Dangi Chen, Princeton University
Bo Wang
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What to Pick?

Stronger
task-specific
. . erformance
1. Fine-tuning (FT) P
a. + Strongest performance
b. - Need curated and labeled dataset for each new task
(typically 1k-100k+ ex.)
c. - Poor generalization, spurious feature exploitation
2. Few-shot (FS)
a. + Much less task-specific data needed
b. + No spurious feature exploitation
c. - Challenging
3. One-shot (1S)
a. + “Mostnatural,” e.g. giving humans instructions
b. - Challenging
4. Zero-shot (0S)
a. + Most convenient More convenient
b. - Challenging, can be ambiguous general, less data .

Source: COS 597G, Dangi Chen, Princeton University
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Larger Models Learn Better In-Context

Zero-shot One-shot Few-shot

175B Params

Natural Language

60 Prompt

50

40

Accuracy (%)

30

20

10
1.3B Params

Number of Examples in Context (K)

23

Source: COS 597G, Dangi Chen, Princeton University
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Larger Models Learn Better In-Context

Zero-shot One-shot Few-shot

175B Params
Natural Language
60 Prompt
50 \
= 40
i
s -
g 30 £ No Prompt
< o7 - | 13B Params
20
10 E
7 1.3B Params
02
0
Number of Examples in Context (K) o
prompt matters prompt does not matter (much)

Source: COS 597G, Dangi Chen, Princeton University

N I CSC413/2516 Lecture 10:  Generative Model




N
Large Language Models (LLMs)

Q1. Describe what in-context learning is and how it is
distinct from previous adaptation methods.

e In-context learning is the process of learning diverse skills and
subtasks during the pre-training process that can be subsequently
leveraged by prompting the model at inference time using natural
language instructions and/or demonstrations (“shots”)

e Unlike fine-tuning, the model is only trained once for all
downstream tasks

e Weights are frozen, NOT trained!

28

Source: COS 597G, Dangi Chen, Princeton University
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g(;/j THE TRANSFORMER
2 o

Quick Recap

I am a student

ENCODER STACK DECODER STACK
( ENCODER DECODER )
L) Ly
( ENCODER DECODER )
L) L3
| ENCODER DECODER )
L) T
| ENCODER DECODER )
: ) Ly
‘4 ENCODER DECODER )
) ry
( ENCODER DECODER j
k ............... T ..............................................

Image Sources: https://jalammar.github.io/

BERT

‘ ENCODER
e

‘ ENCODER

‘ ENCODER

Generative Model

& GPT-2

DECODER

DECODER

DECODER
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Zooming In

DECODER BLOCK #2 Key difference: decoder uses
¢ masked self-attention

C

[Masked Self-Attention

Self-Attention Masked Self-Attention

HD
N AUA,

e T

<s> robot must obey
1 2 3 4 5 6 512
. . . 30
Image Sources: https://jalammar.github.io/
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GPT-3 > GPT-2

GPT-8 ity

more layers & parameters
bigger dataset

longer training

larger embeddings

larger context window - few-shot (whereas GPT-2 was zero-shot only)

32
Image Sources: https://jalammar.github.io/
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~
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GPT-3 is MASSIVE!

e 96 decoder blocks (2x GPT-2)

e Context size: 2048 (2x GPT-2)

e Embedding size: 12288 (~8x
GPT-2)

e Params: 175b (~117x GPT-2)

DECODER

DECODER

Positional encoding for token #1

Token embedding of <s> i ¢
EEEN

33

Image Sources: https://jalammar.github.io/

Bo Wang
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GPT-3 is MASSIVE!

Model Name Nparams Mlayers Omodel Theads dhead Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10~*
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 M 2.0 x 1074
GPT-32.7B 2.7B 32 2560 32 80 M 1.6 x 107
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x10%
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 107#
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 1074

e All models were trained on 300B tokens

e Follows power law argued in Kaplan et al.

e “GPT-3” » GPT-3175B

Validation Loss

Tl 5132516 Lecture 10: Generative Model
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— L =2.57-C70%

107 10° 10
Compute (PetaFLOP/s-days)

Parameters
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Datasets

A more curated Common Crawl

1. Filtered based on similarity to well known corpora (45TB - 570GB)

2. Fuzzydeduplication on a document level
3. Augmented with well known corpora to increase diversity

Quantity Weight in Epochs elapsed when
Dataset (tokens)  training mix  training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Booksl 12 billion 8% 1.9
Books2 55 billion 8% 043
Wikipedia 3 billion 3% 3.4

Bo Wang
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Training Procedures

e Larger models ~>larger batch sizes & smaller LRs

e Model parallelism for each matrix multiply + across layers
e Adam optimizer

e Gradient clipping - 1.0

e Linear LR warm up - cosine decay

e DBatch size increased gradually

e Weight decay » 0.1 for regularization

37
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GPT-3, the good, the meh, the ugly

™~

LM, Cloze &
Completion
Closed Book QA
NMT

J

Bo Wang

f

N

\

Commonsense
Reasoning
SuperGLUE

/
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Reading
Comprehension
NLI

_4

61



N
Large Language Models (LLMs)

Limitations
e Of GPT-3...
o Limited generation (repetitions,
contradictions)

Limited “common sense” world model
Poor one-shot and zero-shot performance
(on some reading comprehension and
comparison tasks)

o No bidirectionality

e Of language models in general...

o Simple pre-training objective

o Lack of grounding

o Poor sample efficiency

Performance aside...
o Not interpretable
o Adaptationvs.

recognition
o Expensive!

CSC413/2516 Lecture 10: Generative Model
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Broader Impact: Misuse

1. Misuse
a. Misinformation, spam, phishing, plagiarism
2. Threat vector analysis

a. Post-GPT-2: few misuse experiments and no deployment, professionals found no
discernible change in operations

b. Why? LMs are expensive, humans needed to filter stochastic output — will this
continue?

71
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Broader Impact: Misuse

1. Misuse
a. Misinformation, spam, phishing, plagiarism
2. Threat vector analysis
a. Post-GPT-2: few misuse experiments and no deployment, professionals found no

discernible change in operations
b. Why? LMs are expensive, humans needed to filter stochastic output — will this

continue?
HOME > TECHNEWS In The News
A man used Al to bring back his deceased fiancée. But the GPT-3 disinformation campaigns
creators of the tech warn it could be dangerous and used to inenecsingly nealislic
spread misinformation. SC Magatine
Margaux MacColl Jul 24, 2021,2:55 PM R) ) (@) August 4, 2021

(https://www.businessinsider.com/man-used-ai-to-talk-to-late-fiance-experts-warn-te (https://cset.georgetown.edu/article/gpt-3-disinformati
ch-could-be-misused-2021-7) on-campaigns-increasingly-realistic/) 72
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Senti WordNet (Baccianella 2010)

Broader Impact: Fairness and Bias

o o
2. Race 3. Religion
2 Sentiment Across Models
- ';sa'iz Religion Most Favored Descriptive Words
30 A Whit Atheism “Theists’, “‘Cool’, ‘Agnostics’, ‘Mad’, ‘Theism’, ‘Defensive’, ‘Complaining’, ‘C
.' € ‘Characterized’
—— Latinx - . -
o | . Buddhism ‘Myanmar’, ‘Vegetarians’, ‘Burma’, ‘Fellowship’, ‘Monk’, ‘Japanese’, ‘Reluctar
v 20 —— Indian z A - >
5] - lightenment’, “Non-Violent
a Middle eastern — -
- Christianity ~ ‘Attend’, ‘Ignorant’, ‘Response’, ‘Judgmental’, ‘Grace’, ‘Execution’, ‘Egypt’,
é 10 A ments’, ‘Officially’
b= Hinduism ‘Caste’, ‘Cows’, ‘BJP’, ‘Kashmir’, ‘Modi’, ‘Celebrated’, ‘Dharma’, ‘Pakistani’, ‘0
A 0+ ] Islam ‘Pillars’, “Terrorism’, ‘Fasting’, ‘Sheikh’, ‘Non-Muslim’, ‘Source’, ‘Charities’,
/ . s - ‘Prophet’
=Tk T e ~ Judaism ‘Gentiles’, ‘Race’, ‘Semites’, ‘Whites’, ‘Blacks’, ‘Smartest’, ‘Racists’, ‘Arabs’, ¢
=20 +— T T T T T T
350M 760M 1.3B 2.7B 6.7B 13B 175B

Model Size
"The {race} man was very"
"The {race} woman was very"
""People would describe the {race} person as very"

"{Religion practitioners} are ”
74
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Broader Impact: Energy Usage

. Training 175B takes Several B Accelerator Years [l Energy Consumption (MWh) Net CO2e (metric tons)
1,500
thousand petaflops-days, Ll
or 1287 MWh
1,000
(100x GPT-2,15x T5)
e May be able to amortize il
this if we use the models B 179
. ) 84 8 86 9 24 :.
sufficiently at inference to . -I ~m -
Meena (TPUV3) T5 (TPUV3) GPT-3 (V100) Gs(l:lrgﬂ-vsa[;OB Trasr:ggﬁ'rr;\er
do useful tasks TPU)

(Patterson et al 2021)

Bo Wang CSC413/2516 Lecture 10: Generative Model
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How much more should we scale up?

e PalLM - 540B parameters
o Surpasses GPT-3 on 28 out of 29 NLP tasks
o Graph below is improvement over SOTA
o Improved scale + chain of thought prompting brings this improvement

+10

+8
=

8 +6
b}
>
3

€ +4
<
£
kol
3

s +2
E

+0

Natural Common-sense In-context Question Winograd-style  Cloze and
Language Reasoning Reading Answering Completion
Inference Comprehension

PalLM 540B performance improvement over prior state-of-the-art (SOTA) results on 29 English-based NLP tasks.
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