CSC413/2516 Lecture 8:
Transformers and Autoregressive models

Bo Wang

a.k.a. Attention is All You Need!
a.k.a. Good bye, RNN!
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Overview

@ We have seen a few RNN-based sequence prediction models.

e It is still challenging to generate long sequences, when the decoders
only has access to the final hidden states from the encoder.

e Machine translation: it's hard to summarize long sentences in a single
vector, so let's allow the decoder peek at the input.
e Vision: have a network glance at one part of an image at a time, so
that we can understand what information it's using
@ We also introduced attention coupled with RNN that drastically
improves the performance on the long sequences.
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Overview: Attention-Based Machine Translation

@ The model has both an encoder and a decoder. The encoder
computes an annotation of each word in the input.

@ |t takes the form of a bidirectional RNN. This just means we have an
RNN that runs forwards and an RNN that runs backwards, and we
concatenate their hidden vectors.

e The idea: information earlier or later in the sentence can help
disambiguate a word, so we need both directions.
e The RNN uses an LSTM-like architecture called gated recurrent units.
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Overview: Attention-Based Machine Translation

@ The decoder network is also an RNN. Like the encoder/decoder translation
model, it makes predictions one word at a time, and its predictions are fed
back in as inputs.

@ The difference is that it also receives a context vector c(t) at each time step,
which is computed by attending to the inputs.
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Overview: Attention-Based Machine Translation

@ The context vector is computed as a weighted average of the

encoder's annotations.
() — Zaijh(i)
J

@ The attention weights are computed as a softmax, where the inputs
depend on the annotation and the decoder’s state:

exp(éij)
Zj' exp(dr)
a; = f(sU=1, hl))

@ Note that the attention function, f depends on the annotation vector,
rather than the position in the sentence. This means it's a form of
content-based addressing.

e My language model tells me the next word should be an adjective.
Find me an adjective in the input.
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Limitations of Attention in RNN

1. Itis hard to generalize to long sequences.
2. ltis difficult to parallel the computing.

3. It does not fully exploit the contextual information.
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Attention is All You Need (Transformers)

@ We would like our model to have access to the entire history at the
hidden layers.

@ Previously we achieve this by having the recurrent connections.

l hiddens 1 | hiddens 2 l | hiddens 3 '—O, hiddens 4
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S
Attention is All You Need (Transformers)

@ We would like our model to have access to the entire history at the
hidden layers.

@ Previously we achieve this by having the recurrent connections.
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e Core idea: use attention to aggregate the context information by
attending to one or a few important inputs from the past history.
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Attention is All You Need

@ We will now study a very successful
neural network architecture for machine
translation in the last few years:

Vaswani, Ashish, et al. "Attention
is all you need.” Advances in Neu-
ral Information Processing Systems.
2017.

@ "“Transformer” has a encoder-decoder
architecture similar to the previous
sequence-to-sequence RNN models.

e except all the recurrent connections
are replaced by the attention modules.
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Disassemble the Transformers
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The core of Transformers: Self-attention layer

Key Difference:

1. zisobtained based on the whole input
sequence

2. zcan be computed parallelly

Sequence-to-Sequence Modeling

z1 z2 z3 z4 z1 z2 z3 z4
(I 11
RNN ‘ Self-Attention
[ 11T
x1 X2 X3 x4 x1 X2 X3 x4
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The core of Transformers: Self-attention layer

Important Concepts:

Self-Attention — Key
Query

T T T T Value
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Example Time: Self-attention layer

Stepl: Calculate Queries, Keys, Values

Input Thinking Machines

Embedding x X [

Queries (o § I:l:l:l qgl:l:lj wa

Keys D:I:' I:l:‘j

Values V'I:I:I:l V2|:|:|:| WV

Source: Jay Alammar
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Example Time: Self-attention layer

How to understand the queries, keys and values in attention?

The key/value/query formulation of attention is from the paper Attention Is All You Need.

84 How should one understand the queries, keys, and values

The key/value/query concepts come from retrieval systems. For example, when you type a query to
search for some video on Youtube, the search engine will map your query against a set of keys
(video title, description etc.) associated with candidate videos in the database, then present you the

best matched videos (values).

<

The attention operation turns out can be thought of as a retrieval process as well, so the
key/value/query concepts also apply here. (BTW the above example is just a toy system for
illustration, in practice search engines and recommendation systems are much more complex.)

https://stats.stackexchange.com/questions/421935/what-exactly-are-keys-queries-and-values-in-attention-mechanisms
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Example Time: Self-attention layer attention(Q, &, V)=softma><<3§—;) V.

Step2: Calculate ‘Scaled Dot-Product Attention’ scores

Input Thinking Machines

Embedding <L T T ] DT
Queries g L[] [ T]
Keys D:D D:Ij
Values Vi [Dj V2 D:D

Source: Jay Alammar
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Example Time: Self-attention layer attention(Q, &, V)=softma><<3§—;) V.

Step2: Calculate ‘Scaled Dot-Product Attention’ scores
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Example Time: Self-attention layer attention(Q, &, V)=softma><<3§—;) V.

Step3: Calculate the output of self-attention layer
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Source: Jay Alammar
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Example Time: Self-attention layer

Matrix Form of Self-Attention
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Source: Jay Alammar
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Attention i1s All You Need

T

Scaled Dot-Product
Attention

| — 11

L

Vv K Q
@ The Scaled Dot-Product Attention attends to one or few entries in
the input key-value pairs.

e Humans can attend to many things simultaneously.

@ The idea: apply Scaled Dot-Product Attention multiple times on the
linearly transformed inputs.

MultiHead(Q, K, V') = concat (cy, -+ ,cp) wo,
c; = attention(QWS, KWK, viw¥).
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A bit of extension: Multi-Head Attention

The beast with multiple heads --- Step 1 : Calculate multiple keys, queries, and values

ATTENTION HEAD #0
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Soaurce: Jay Alammar
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A bit of extension: Multi-Head Attention

The beast with multiple heads --- Step 2 : Calculate multiple attentions

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
v
ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

Source: Jay Alammar
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A bit of extension: Multi-Head Attention

The beast with multiple heads --- Step 3 : Concatenate and Compress

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the ~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN

Source: Jay Alammar
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A bit more of extension: Masked Multi-Head Attention

Sometimes you don’t want to attend to future sequences, just mask them.
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Summary: Self-attention layer

@ In general, Attention mappings can be
described as a function of a query and a set of
key-value pairs.

@ Transformers use a " Scaled Dot-Product
Attention” to obtain the context vector:

KT
c(t) = attention(Q, K, V) = softmax (Q ) V.

Vdk

scaled by square root of the key dimension dy.

@ Invalid connections to the future inputs are
masked out to preserve the autoregressive
property.
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Vdk

Scale the un-normalized attention weights by the square root of the vector
length:

)
More Example: Scaled Dot-Produciattention(@, k. V)=softmax<QK )v‘

query key/ value
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More Example: Different Keys and attention(@, k. V)=softmax<

When the key and the value vectors are different:

query key value
1] 11015 2[2]0. 2 | 2 0o |
context = attention( 1 |, 3|0 -1, 5|5 2 5+ 006X |5 +047% 2 = |-
ol [o]1]2]][3]3]- 3 3 -1

‘ T ? 7
1|0|5]| |1 0.47
attention = softmax( ‘ 3lol1l [11¥3=] 006
weights T | § ‘
‘ 0112 0 0.47 | 2 2
-5 -5
3 3
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The core of Transformers: Self-attention layer

Key Takeaway:

1. Self-attention learns how/where to attend
within the whole input sequences.

2. Self-attention can be computed parallelly

3. F(S)=F(R)* (1 +epi)

z1 z2 z3 z4 z1 z2 z3 z4
(I 11
RNN ‘ Self-Attention
[ 11T
x1 X2 X3 x4 x1 X2 X3 x4
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GPS system: Positional Encoding

@ Unlike RNNs and CNNs encoders, the attention encoder outputs do
not depend on the order of the inputs. (Why?)

@ The order of the sequence conveys important information for the
machine translation tasks and language modeling.

@ The idea: add positional information of a input token in the sequence
into the input embedding vectors.

PE 0s.2i = sin(pos/100002/dems)
PE jos 2141 = cos(pos/100002i/de"’b),

@ The final input embeddings are the concatenation of the learnable
embedding and the postional encoding.
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GPS system: Positional Encoding
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GPS system: Positional Encoding

POSITIONAL 1 1 0.84 [XLLY 1 XM 0.0002| -0.42 G
ENCODING

+

+ +
EMBEDDINGS  xi [ [ ] x. xs [

INPUT | like cats

A real example of positional encoding with a toy embedding size of 4

Source: Jay Alammar
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Nothing Fancy: Skip Connections and Normalization
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Let's assemble the transformer!
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Main Body: Encoder-Decoder
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Main Body: Encoder-Decoder
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Main Body: Encoder-Decoder
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Main Body: Encoder-Decoder Training

Decoding time step: 1@3 4 56
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Transformer Machine Translation

@ Transformer has a encoder-decoder
architecture similar to the previous
RNN models.

e except all the recurrent connections
are replaced by the attention modules.

@ The transfomer model uses N stacked
self-attention layers.

@ Skip-connections help preserve the
positional and identity information from
the input sequences.
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Transformer Machine Translation

@ BLEU scores of state-of-the-art models on the WMT14
English-to-German translation task

Translation Model Training time BLEU (diff. from MOSES)
Transformer (large) 3 days on 8 GPU 284 (+7.8)
Transformer (small) 1 day on 1 GPU 249 (+4.3)
GNMT + Mixture of Experts | 1 day on 64 GPUs 260 (+54)
ConvS2S (FB) 18 days on 1 GPU 251 (+4.5)
GNMT 1 day on 96 GPUs 246 (+4.0)

Vaswani, Ashish, et al. " Attention is all you need." Advances in Neural Information Processing Systems. 2017.
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Transformer Machine Translation

e Self-attention layers learnt "it" could refer to different entities in the
different contexts.

T -,
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@ Visualization of the 5th to 6th self-attention layer in the encoder.

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
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Transformer Machine Translation
F(S) = F(R) * (1 + epi)

Transformer-XL
(Dai et al., 2019)

R

Compressive

Transformer
(Rae et al., 2018)

urrence

Performer
(Charomanski et al., 2020)

Set Transformer
(Leeetal, 2019)

Low Rank /
(informer  Kernels

Compressed

(Liu et al,, 2018) +
v Longformer Routing
Ere  GiEmechaEy Transformer,
(Roy et al., 2020)

Linear (Ainslie et al., 2020)

Transformer
(Katharopoulos et al,, 2020)

Synthesizer

(Tay et al,, 2020a)

Big Bird

(zaheer et al., 2020)

Fixed/Factorized/ | g hom
Random Patterns | Transformer

(Tay et al., 2020b)
Reformer

Blockwise Transformer (Kitaev et al., 2020)

(Qiu et al, 2019)

Sparse Transformer
Image Transformer (Child et l, 2019)
(Parmar et al,, 2018)

Axial Transformer
(Ho etal, 2019)
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After the break

After the break: Computational Cost
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Computational Cost and Parallelism

@ There are a few things we should consider when designing an RNN.
@ Computational cost:
e Number of connections. How many add-multiply operations for the
forward and backward pass.

e Number of time steps. How many copies of hidden units to store for
Backpropgation Through Time.

e Number of sequential operations. The computations cannot be
parallelized. (The part of the model that requires a for loop).
@ Maximum path length across time: the shortest path length
between the first encoder input and the last decoder output.

e It tells us how easy it is for the RNN to remember / retreive
information from the input sequence.
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Computational Cost and Parallelism

@ Consider a standard d layer RNN from Lecture 7 with k hidden units,
training on a sequence of length t.
l‘.

i

[ hiddens 1 | [ hiddens 2
3

|
hiddens 1 } > | hiddens 2 H hiddens 3 }—»‘ hiddens 4
hiddens 1 I > l hiddens 2 » | hiddens 3 thadens 4

word 1 ’ ‘ word 2 ’

|

l 1 1
1 hiddens 3 hiddens 4
‘ iddens J | iddens

d

word 3 ’ ’ word 4 ‘

t
@ There are k? connections for each hidden-to-hidden connection. A
total of t x k? x d connections.
@ We need to store all t x k x d hidden units during training.
@ Only k x d hidden units need to be stored at test time.
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Computational Cost and Parallelism

@ During backprop, in the standard encoder-decoder RNN, the
maximum path length across time is the number of time steps.

e Attention-based RNNs have a constant path length between the
encoder inputs and the decoder hidden states.

e Learning becomes easier. Why?
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Computational Cost and Parallelism

e During forward pass, attention-based RNNs achieves efficient
content-based addressing at the cost of re-computing context vectors
at each time step.

e Bahdanau et. al. computes context vector over the entire input
sequence of length t using a neural network of k? connections.
o Computing the context vectors adds a t x k? cost at each time step.
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Computational Cost and Parallelism

@ In summary:
e t: sequence length, d: # layers and k: # neurons at each layer.

training training test test
Model complexity ’ memory complexity memory
RNN tx k®xd | txkxd | txk‘xd k x d
RNN+attn. | * x k* xd | ? x kx d tzxkzxd‘txkxd

@ Attention needs to re-compute context vectors at every time step.

e Attention has the benefit of reducing the maximum path length
between long range dependencies of the input and the target

sentences.
sequential maximum path
Model operations | length across time
RNN t t
RNN+-attn. t ‘ 1
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Improve Parallelism

@ RNNSs are sequential in the sequence length t due to the number
hidden-to-hidden lateral connections.

e RNN architecture limits the parallelism potential for longer sequences.

@ Improve parallelism: remove the lateral connections. We will have a
deep autoregressive model, where the hidden units depends on all the
previous time steps.

hiddens 3 hiddens 4

‘ hiddens 1 ‘ nod&ns 2 hiodens 3 —’} hiddens 4

_,iii

word 1 word 2 word 3 word 4

‘ hiddens 1 ‘ hiddens 2 |

word 1 ‘ word 2 ‘ | word 3 | word 4

e Benefit: the number of sequential operations is now linear in the depth
d, but is independent of the sequence length t. (usually d << t.)
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Computational Cost and Parallelism

@ Self-attention allows the model to learn to access information from
the past hidden layer, but decoding is very expensive.

e When generating sentences, the computation in the self-attention
decoder grows as the sequence gets longer.

hiddens 1

hiddens 1

hiddens 2 hiddens 3 hiddens 4
K, V, Ks V4 K: Vi
I | ; 2

hiddens 2 hiddens 3 hiddens 4
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- - KT
Computational Cost and Parallelisngattention(Q. k. V)=softmax<?@) V.

@ t: sequence length, d: # layers and’k: # neurons at each layer.

training aining test test
Model complexity memory complexity memory
RNN txk’xd/| txkxd | txk®xd k x d

RNN+attn. | 2 x k®2x/d | ® xkxd | P xk®xd | txkxd
transformer | [t x kk d | txkxd | ?xkxd | txkxd

@ Transformer vs RNN: There is a trade-off between the sequencial
operations and decoding complexity.

e The sequential operations in transformers are independent of sequence
length, but they are very expensive to decode.

e Transformers can learn faster than RNNs on parallel processing
hardwards for longer sequences.

sequential maximum path
Model operations | length across time
RNN t t
RNN+-attn. t 1
transformer d 1
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Computational Cost --- Quick Summary

Self-attention v.s. RNN

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(t2 % k) O(1) O(1)

Recurrent O(t kQ) O(t) O(t)
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The Rise of Large Language Models

DECODER STACK

DECODER
. j DECODER
: :

£Z THE TRANSFORMER

ENCODER STACK

. DECODER H
H DECODER :
Y _r.v!cunm H j

. DECODER

[ DECODER

- BERT

- 8
)

117M Parameters

345M Parameters

762M Parameters 1,542M Parameters
ENCODER

Source: https://jalammar.github.io/illustrated-gpt2/
CSC413/2516 Lecture 8: Transformers and /




Transformer Language Pre-training

@ Similar to pre-training computer vision models on ImageNet, we can
pre-train a language model for NLP tasks.

@ The pre-trained model is then fine-tuned on textual entailment,
question answering, semantic similarity assessment, and document
classification.

Classification | swn |  Text | Exract ]}-| Transformer |+ Linear |

Entailment | San | Premise | pelim | Hypothesis | Exact I}—{ Transformer |+ Linear |

[ st | Text1 [ peim | Text2 | exaa |}-| Transformer [

Similarity - +)—'I Linear
l Start ] Text 2 I Delim ] Text 1 lsma ]]—{ Transformer }~-

l Start l Context l Delim l Answer 1 [Exuaa |}-| Transformer H Linear }—

Multiple Choice[ Start l Context l Delim l Answer 2 [Ema ]}-I Transformer H Linear |— ]
|1'en& PosmonEmbedl | san | context | peim | AnswerN | extact ]J».| Transformer |+ Linear |

Radford, Alec, et al. "Improving Language Understanding by Generative Pre-Training.”" 2018.
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Transformer Language Pre-training

@ Increasing the training data set and the model size has a noticible
improvement on the transformer language model. Cherry picked
generated samples from Radford, et al., 2019

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top
of one peak, the water looked blue, with some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be
seen from the air without having to move too much to see them — they were so close they could touch
their horns.

For the full text samples see Radford, Alec, et al. "Language Models are Unsupervised Multitask Learners.” 2019.
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Transformer Language Pre-training

Talk to Transformer

See how a modern neural network completes your text. Type a custom snippet or
try one of the examples. This is a limited demo of InferKit,

Custom prompt v

How do | best explain the powers of transformers?

Completion
How do | best explain the powers of transformers?

I think you can make a lot of sense of them by imagining these cars in the middle
of this huge, glowing energy field of energy, like you’d see in a Transformers movie.
The car is the conduit that fills in the empty spaces, and the energy gives it a little
extra oomph. All the effects shots that make the car seem like it’s levitating, or
traveling faster than normal, are actually taking advantage of this effect. A few of

the car’s shots also use it for its optical effect, which is pretty
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Transformer Language Pre-training

Talk to Transformer

See how a modern neural network completes your text. Type a custom snippet or

try one of the examples. This is a limited demo of InferKit.

Custom prompt -

Should | choose to be a professor instead of a software engineer?

Generate Another

Completion
Should | choose to be a professor instead of a software engineer?

I found myself wondering if I should leave the software engineering field altogether
or stay in the profession I'd always dreamed of. Did my skill set lie with teaching, or
software? Maybe | should go all the way to business school, and once I’d polished
up my MBA, I'd be hired as a venture capitalist and be able to make lots of money.
In the meantime, | could work part time as a software engineer and on consulting
projects with engineers.
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Why Next-Token Prediction Can Achieve AGI
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After the break

After the break: CNN for speech analysis
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Overview

@ We've already looked at a few autoregressive models in this course:

e Neural language models from Lecture 3
o RNN language models (and decoders) from Lecture 7
e Transformer decoders from Lecture 8

@ We can push this further, and generate very long sequences.

I In
NFPEES. sar - -l

T2

Treat an image as a A speech signal can be
very long sequence represented as a waveform, with at least
using raster scan order 16,000 samples per second.
@ Problem:

e Training an RNN to generate these sequences requires a sequential
computation > 10,000 time steps.
@ Transformers are too expensive to train on 10,000 time steps.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 8: Transformers and



Causal Convolution

Idea 1: causal convolution

@ For RNN language models, we used the training sequence as both the
inputs and the outputs to the RNN.

o We made sure the model was causal: each prediction depended only on
inputs earlier in the sequence.

@ We can do the same thing using a convolutional architecture.

OOOOOOOOOOOOOOO/OOM

4

st
7

QO O O O O O O O (¢ Hidden Layer
® © © © 6 ©¢ ©¢ © © o o ik/é/om

@ No for loops! Processing each input sequence just requires a series of
convolution operations.
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Causal Convolution

Causal convolution for images:

OO0O00O0

00000

ONON NONO
z) Zn O O O

z: ® Q0 O
oy X O

O®®0O0
T p2 OO0O00O0

The image is treated as a very long We can restrict the connectivity pattern

sequence of pixels using raster in each layer to make it causal. This can

scan order. be implemented by clamping some
weights to zero.
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CNN vs. RNN

© © 0 0 9 OOOO,T
S 4 —>—>—>‘—>

ol ol — O
PN T
e) ¢ 6 o olooo

@ We can turn a causal CNN into an RNN by adding recurrent
connections. Is this a good idea?

@ The RNN has a memory, so it can use information from all past time
steps. The CNN has a limited context.

e But training the RNN is very expensive since it requires a for loop over
time steps. The CNN only requires a series of convolutions.

o Generating from both models is very expensive, since it requires a for
loop. (Whereas generating from a GAN or a reversible model is very
fast.)
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S
PixelCNN and PixelRNN

@ Van den Qord et al., ICML 2016, “Pixel recurrent neural networks"

@ This paper introduced two autoregressive models of images: the
PixelRNN and the PixelCNN. Both generated amazingly good
high-resolution images.

@ The output is a softmax over 256 possible pixel intensities.
e Completing an image using an Pixel CNN:

occluded completions original

- A | b
. b A




PixelCNN and PixelRNN

Samples from a PixelRNN trained on ImageNet:
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PixelCNN and PixelRNN

PixelCNN lowers the training time considerably as compared to PixelRNN.
However, the image generation is still sequential as each pixel needs to given
back as input to the network to compute next pixel. The major drawback of

PixelCNN is that it’s performance is worse than PixelRNN.

Source: Harshit Sharma
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Dilated Convolution

Idea 2: dilated convolution

@ The advantage of RNNs over CNNs is that their memory lets them
learn arbitrary long-distance dependencies.

@ But we can dramatically increase a CNN's receptive field using dilated
convolution.
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Dilated Convolution

Idea 2: dilated convolution

@ The advantage of RNNs over CNNs is that their memory lets them
learn arbitrary long-distance dependencies.

@ But we can dramatically increase a CNN's receptive field using dilated
convolution.




Dilated Convolution

Idea 2: dilated convolution

@ The advantage of RNNs over CNNs is that their memory lets them
learn arbitrary long-distance dependencies.

@ But we can dramatically increase a CNN's receptive field using dilated
convolution.

Opt @ @ @O O O 000200 CQOGOO
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WaveNet

@ WaveNet is an autoregressive model for raw audio based on causal
dilated convolutions.

e van den Oord et al., 2016. “WaveNet: a generative model for raw
audio”.
@ Audio needs to be sampled at at least 16k frames per second for good
quality. So the sequences are very long.

@ WavelNet uses dilations of 1,2,...,512, so each unit at the end of
this block as a receptive field of length 1024, or 64 milliseconds.

o It stacks several of these blocks, so the total context length is about
300 milliseconds.

@ https://deepmind.com/blog/wavenet-generative-model-raw-audio/
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WaveNet

Mean Opinion Scores

DGooglerud Why Google  Solutions ~ Products  Pricing  Getting Started Q Docs  Support Engl

Cloud Text-to-Speech Contact Us

Text-to-Speech TeXt_to_S peeCh Gartner

Google Cloud named ¢
2020 Magic Quadrant:
Demo Developer Services

Key features Try it free Learn more

What's new

Benefits Convert text into natural-sounding speech using an API powered by Google's

Al technologies.

. v/ Improve customer interactions with intelligent, lifelike responses
Documentation

v/ Engage users with voice user interface in your devices and applications

Use cases
v/ Personalize your communication based on user preference of voice and language
L] n L] n L] n ]
Current Best WaveNet Current Best WaveNet Current Best WaveNet Current Best WaveNet
Non-WaveNet Non-WaveNet Non-WaveNet Non-WaveNet

Jimmy Ba and Bo Wang CSC413/2516 Lecture 8: Transformers and



The Bitter Lesson - Rich Sutton

The biggest lesson that can be read from 70
years of Al research is that general methods
that leverage computation are ultimately the
most effective, and by a large margin. The
ultimate reason for this is Moore's law, or rather
its generalization of continued exponentially
falling cost per unit of computation.
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