CSC421/2516 Lecture 4:
Convolutional Neural Networks & Image Classification

Bo Wang

@ a.k.a. How do computers see the world?
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Logistics

Some administrative stuff:

e HW 2 is out! (Due Oct 17)

@ Final Project

e The project proposal is due Oct 24!

o Having trouble forming a team? send us an email!
o Midterm

¢ The midterm quiz will cover the lecture materials up to lecture 6
Date: Oct 17, 2 hours, on the lecture
Format: In-person, closed-book, with one double-sided page of notes

®

Time conflict? send us an email!

(]
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Overview

So far in the course, we've seen two types of layers:
@ fully connected layers (Lecture 2)
e embedding layers (i.e. lookup tables) (Lecture 3)

Different layers could be stacked together to build powerful models.
Let's add another layer type: convolution layers
Conv layers are very useful building blocks for computer vision applications.

Layers

v
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How do we teach computers vision?

What makes vision hard?
@ Vison needs to be robust to a lot of transformations or distortions:
o change in pose/viewpoint
e change in illumination
o deformation
s occlusion (some objects are hidden behind others)
@ Many object categories can vary wildly in appearance (e.g. chairs)
@ Geoff Hinton: “Imaging a medical database in which the age of the
patient sometimes hops to the input dimension which normally codes
for weight!”

CSC421/'2516 Lecture 4: Convolutional Neur:



How do we teach computers vision?

What will you do before this lecture?

/ MLP
32 input
A

— 1
This isn't going to scale to full-sized images.

10x 3072
weights

3072

3
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How do we teach computers vision?

Suppose we want to train a network that takes a 200 x 200 RGB image as
input.

I 1000 hidden units |

densely connected

200
200
[ 3

What is the problem with having this as the first layer?

@ Too many parameters! Input size = 200 x 200 x 3 = 120K,
Parameters = 120K x 1000 = 120 million.

@ What happens if the object in the image shifts a little?
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How do we teach computers vision?

In the fully connected layer, each feature (hidden unit) looks at the entire image.

Since the image is a BIG thing, we end up with lots of parameters.
I ) |

But, do we really expect to learn a useful feature at the first layer which depends

on pixels that are spatially far away 7
The far away pixels will probably belong to completely different objects (or object

sub-parts). Very little correlation.
We want the incoming weights to focus on local patterns of the input image.
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How do we teach computers vision?

The same sorts of features that are useful in analyzing one part of the
image will probably be useful for analyzing other parts as well.

E.g., edges, corners, contours, object parts

We want a neural net architecture that lets us learn a set of feature
detectors shared at all image locations.
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A brief review: Convolution

We've already been vectorizing our computations by expressing them in
terms of matrix and vector operations.

Now we'll introduce a new high-level operation, convolution. Here the
motivation isn't computational efficiency — we'll see more efficient ways
to do the computations later. Rather, the motivation is to get some
understanding of what convolution layers can do.
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A brief review: Convolution

We've already been vectorizing our computations by expressing them in
terms of matrix and vector operations.

Now we'll introduce a new high-level operation, convolution. Here the
motivation isn't computational efficiency — we'll see more efficient ways
to do the computations later. Rather, the motivation is to get some
understanding of what convolution layers can do.

Let's look at the 1-D case first. If a and b are two arrays,
(3 %k b)t = Z arbt_,,-.
T

Note: indexing conventions are inconsistent. We'll explain them in each
case.
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A brief review: 2-D Convolution

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

(AxB)j = Z ZAstBi—s,j—t-
s t
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Convolution

Some properties of convolution:
@ Commutativity
axb=>bxa

@ Linearity
ax(Ab+ Axc)=Aaxb+ \axc

Bo Wang



A brief review: 2-D Convolution

Flip-and-Filter

113 |1 112
0-1]1] 3k

0 |-1
2 2|1

-1 0
1131 X 2 1 51712
ol-111 O~r=2-4
21211 2,164 -3

-2 |-2 |1
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Apply convolutions on images

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?

o110
sk [1]4]1
0O(1]0
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Apply convolutions on images

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?

o110
sk [1]4]1
0O(1]0

Answer: Blur
Note: We call the resulted image as an "activation map” by the kernel.
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Apply convolutions on images

What does this convolution kernel do?

0-1(0
sk [-1]8]-1
O(-1]|0
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Apply convolutions on images

What does this convolution kernel do?

0-1(0
sk [-1]8]-1
O(-1]|0

Answer: Sharpen
Note: We call the resulted image as an "activation map” by the kernel.
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Apply convolutions on images

What does this convolution kernel do?

0/-1]0
ko|-1] 4]
0[-1]0
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Apply convolutions on images

What does this convolution kernel do?

0/-1]0
ko[-1]4]-1
0[-1]0

Answer: Edge Detection
Note: We call the resulted image as an "activation map” by the kernel.
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Apply convolutions on images

What does this convolution kernel do?

10 |-1
k |2]0]-2
1[0 -1
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Apply convolutions on images

What does this convolution kernel do?

10 |-1
k |2]0]-2
1[0 -1

Answer: "Stronger” Edge Detection
Note: We call the resulted image as an "activation map” by the kernel.
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A new layer: Convolution Layers

Fully connected layers:
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A new layer: Convolution Layers

Locally connected layers:

=i
H
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A new layer: Convolution Layers

Convolution layers:

()

Tied weights

Each column of hidden units looks at a small region of the image, and the
weights are shared between all image locations.
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Example Time: A closer look at convolution

1;(1 1x0 1)(1 0 0
1 1 1 0 0 Oxu 1x1 1x0 1 0 4
L S . [ofofaf1]s
i o|o0|1|1]|0
0 0 1 1 0 1 0 1
1o o o|1|1|0]|0
| Convolved
mage Feature
Input: 5 x5 Output: 3x 3
Kernel: 3 x 3
3=(5-3)+1
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Example Time: A closer look at convolution with padding

Input: 5 x5 Output: 5x 5

Kernel: 3 x 3
5=(5-3+2*1)+1

Padding: 1
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Example Time: A closer look at convolution with stride

Input: 5 x5 Output: 3 x 3
Kernel: 3 x 3

Padding: 1
Stride =2 3=(5-3+2%1)/2+1

Bo Wang



A closer look at convolution with high dimensional inputs

Note: Kernel depth always equals to the input depth.
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Summary : Convolution Layer

it N
s H

I output maps I

£

w

"% kernel dimension K

1) height H
Jinput maps T |

width W
@ Input: An array of size

WxHxJ @ Output: Feature maps of size
e Hyper-parameters: W x HxI

W=(W-K+2P)/S+1
H=(H-K+2P)/S+1
| =M

e Number of filters: M

s Size of filters: K

e the stride: S

e Number of zero-padding: P

¢ @ @
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Let's do some counting: Size of a Conv Net

@ Ways to measure the size of a network:

o Number of units. This is important because the activations need to
be stored in memory during training (i.e. backprop).

e Number of weights. This is important because the weights need to
be stored in memory, and because the number of parameters
determines the amount of overfitting.

o Number of connections. This is important because there are
approximately 3 add-multiply operations per connection (1 for the
forward pass, 2 for the backward pass).

@ We saw that a fully connected layer with M input units and N output
units has MN connections and MN weights.

@ The story for conv nets is more complicated.
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Let's do some counting: Size of a Conv Net

9
I>

I output maps I

height H
Jinput maps [ |
width W
fully connected layer convolution layer
# output units WHI WHI
# weights WWHHI K21J

# connections WWHHIJ WHK?1J
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Let's do some counting: Size of a Conv Net (Including bias
terms)

I output maps I

height H
Jinput maps T |
width W
fully connected layer convolution layer
# output units WHI WHI
# weights WWHHIJ + WHI K21J+ 1

# connections WWHHAIU+WHI  WHAK2IJ+ WAI
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.
Going Deeply Convolutional

Convolution layers can be stacked:

Tied weights

Bo Wang



Pooling layers

The other type of layer in a pooling layer. These layers reduce the size of
the representation and build in invariance to small transformations.

Most commonly, we use max-pooling, which computes the maximum value
of the units in a pooling group:

Vi = max z;
j in pooling group
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Pooling Layer

Input

3

5

maxpool

O[O0 d

7
9
8

1
3
4

Ul O O N

Input: 4 x 4
Kernel: 2 x 2

Stride: 2

Output: 2 x 2

2=(4-2)/2+1
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Summary : Pooling Layer

() (v2) (¥3)
@) () (@) G G C) (&)
@ Input: An array of size o Output: Feature maps of size
Wx HxJ W x HxI
@ Hyper-parameters: ° l{:l\/ =(W-K)/S+1
o Size of filters: K o H=(H-K)/S+1
o the stride: S o [ =J

Common Setting: K=2,5S=2

Bo Wang



Convolutional networks

Let's finally turn to convolutional networks. These have two kinds of
layers: detection layers (or convolution layers), and pooling layers. The

convolution layer has a set of filters. Its output is a set of feature maps,
each one obtained by convolving the image with a filter.

convolution
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Convolutional networks

Let's finally turn to convolutional networks. These have two kinds of
layers: detection layers (or convolution layers), and pooling layers. The

convolution layer has a set of filters. Its output is a set of feature maps,
each one obtained by convolving the image with a filter.

Example first-layer filters

(Zeiler and Fergus, 2013,

Visualizing and understanding convolutional networks)

convolution
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Convolutional networks

It's common to apply a linear rectification nonlinearity: y; = max(z;,0)

Why might we do this?

convolution linear
rectification

convolution layer
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Convolutional networks

It's common to apply a linear rectification nonlinearity: y; = max(z;,0)

Why might we do this?

@ Convolution is a linear operation.
Therefore, we need a nonlinearity,
otherwise 2 convolution layers
would be no more powerful than 1.

convolution linear @ Two edges in opposite directions
rectification Y
shouldn’t cancel

convolution layer
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Convolutional networks

convolution linear max
rectification pooling
convolution layer pooling layer
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Convolutional networks

Because of pooling, higher-layer filters can cover a larger region of the input than
equal-sized filters in the lower layers.

convolution linear max convolution
rectification pooling
convolution layer pooling layer
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Equivariance and Invariance

We said the network’s responses should be robust to translations of the
input. But this can mean two different things.

@ Convolution layers are equivariant: if you translate the inputs, the
outputs are translated by the same amount.

@ We'd like the network's predictions to be invariant: if you translate
the inputs, the prediction should not change.

@ Pooling layers provide invariance to small translations.

Bo Wang
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Backprop Updates (Optional)

How do we train a conv net? With backprop, of course!

Recall what we need to do. Backprop is a message passing procedure,
where each layer knows how to pass messages backwards through the
computation graph. Let's determine the updates for convolution layers.

@ We assume we are given the loss derivatives y;; with respect to the
output units.

@ We need to compute the cost derivatives with respect to the input
units and with respect to the weights.

The only new feature is: how do we do backprop with tied weights?

Bo Wang



N
Backprop Updates (Optional)

Consider the computation graph for the inputs:

€I

Iy n
L Y2
I3 Ys
Ty

Each input unit influences all the output units that have it within their
receptive fields. Using the multivariate Chain Rule, we need to sum
together the derivative terms for all these edges.
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.
Backprop Updates (Optional)
Recall the formula for the convolution layer:
J R
Yit = Z Z Wi jrXj t+47-
j=117=—R

We compute the derivatives, which requires summing over all the outputs
units which have the input unit in their receptive field:

_ DYt
Xjt = ny',t—’r ﬁ
s

-
= E :yu—*r Wi j,r
=

Written in terms of convolution,
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Backprop Updates (Optional)

Consider the computation graph for the weights:

w Y2

w1——Y3

Each of the weights affects all the output units for the corresponding input
and output feature maps.
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N
Backprop Updates (Optional)

Recall the formula for the convolution layer:
J R
yf,t — E : E : WJ'J,T)(J.,f—}—T'
j=117=—R

We compute the derivatives, which requires summing over all spatial
locations:

dyi
W:JT—ZyrtaWIr

J,m
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After the break

After the break: Object Recognition using CNN!
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Object recognition

@ Object recognition is the task of identifying which object category is
present in an image.

@ It's challenging because objects can differ widely in position, size,
shape, appearance, etc., and we have to deal with occlusions, lighting
changes, etc.

o Why we care about it

o Direct applications to image search
s Closely related to object detection, the task of locating all instances of
an object in an image

o E.g., a self-driving car detecting pedestrians or stop signs

@ For the past 6 years, all of the best object recognizers have been
various kinds of conv nets.
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Datasets

@ In order to train and evaluate a machine learning system, we need to
collect a dataset. The design of the dataset can have major
implications.

@ Some questions to consider:

o Which categories to include?

o Where should the images come from?

o How many images to collect?

o How to normalize (preprocess) the images?




Image Classification

@ Conv nets are just one of many possible approaches to image
classification. However, they have been by far the most successful for

the last 8 years.
@ Biggest image classification “advances” of the last two decades

o Datasets have gotten much larger (because of digital cameras and the

Internet)
o Computers got much faster

@ Graphics processing units (GPUs) turned out to be really good at
training big neural nets; they're generally about 30 times faster than

CPUs.
s As a result, we could fit bigger and bigger neural nets.

Bo Wang



R
MNIST Dataset

@ MNIST dataset of handwritten digits

o Categories: 10 digit classes

e Source: Scans of handwritten zip codes from envelopes
Size: 60,000 training images and 10,000 test images, grayscale, of size
28 x 28
Normalization: centered within in the image, scaled to a consistent
size

@ The assumption is that the digit recognizer would be part of a larger
pipeline that segments and normalizes images.

@ In 1998, Yann LeCun and colleagues built a conv net called LeNet
which was able to classify digits with 98.9% test accuracy.

e It was good enough to be used in a system for automatically reading
numbers on checks.

©

L
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ImageNet

ImageNet is the modern object recognition benchmark dataset. It was
introduced in 2009, and has led to amazing progress in object recognition

since then.
ILSVRC

Egyptiancat  Persian cat Siamese cat
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R
ImageNet

@ Used for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
an annual benchmark competition for object recognition algorithms

@ Design decisions

o Categories: Taken from a lexical database called WordNet

@ WordNet consists of “synsets”, or sets of synonymous words

@ They tried to use as many of these as possible; almost 22,000 as of
2010

@ Of these, they chose the 1000 most common for the ILSVRC

@ The categories are really specific, e.g. hundreds of kinds of dogs

o Size: 1.2 million full-sized images for the ILSVRC
o Source: Results from image search engines, hand-labeled by
Mechanical Turkers

@ Labeling such specific categories was challenging; annotators had to be
given the WordNet hierarchy, Wikipedia, etc.

o Normalization: none, although the contestants are free to do
preprocessing
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.
ImageNet

Images and object categories vary on
a lot of dimensions

Shape Distinctiveness

—

Russakovsky et al.
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.
ImageNet

Size on disk:

MNIST ImageNet
60 MB 50 GB
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Case Study: LeNet

Here's the LeNet architecture, which was applied to handwritten digit
recognition on MNIST in 1998:

C3: 1. maps 16@10x10
S4: f. maps 16@5x5

CS:layer g jayer OUTPUT
120 g o 10

C1: feature maps
INPUT 6@28x28

32x32

S2: f. maps | :
6@14x14 | &

| Full connection Gaussian
Convolutions Subsampling Convolutions ~ Subsampling Full connection
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Size of a Conv Net

Sizes of layers in LeNet:

Layer Type # units | # connections | # weights
C1 convolution 4704 117,600 150
S2 pooling 1176 4704 0
C3 convolution 1600 240,000 2400
S4 pooling 400 1600 0
F5 fully connected 120 48,000 48,000
F6 fully connected 84 10,080 10,080

output | fully connected 10 840 840

Bo Wang

Conclusions?
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Size of a Conv Net

@ Rules of thumb:

o Most of the units and connections are in the convolution layers.
o Most of the weights are in the fully connected layers.

@ If you try to make layers larger, you'll run up against various resource
limitations (i.e. computation time, memory)

@ Conv nets have gotten a LOT larger since 1998!
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Case Study: AlexNet

@ AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to
guess the right category).

192 192 128 2048 7o4s \dense

P

224 | 5 3\ 3L A
NS ) 13 dense’| |dense
. 1000
W11 192 192 128 Max L] L]
= : 204 2048
228\ listrig Max 128 Max pooling
Uot 4 pooling pooling
3 ag

(Krizhevsky et al., 2012)

@ They used lots of tricks we've covered in this course (ReLU units, weight decay,
data augmentation, SGD with momentum, dropout)

@ AlexNet's stunning performance on the ILSVRC is what set off the deep learning
boom of the last 6 years.
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Size of a Conv Net

LeNet (1989) LeNet (1998)

classification task digits digits
categories 10 10
image size 16 x 16 28 x 28
training examples 7,291 60,000
units 1,256 8,084
parameters 9,760 60,000
connections 65,000 344,000
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objects

1,000

256 x 256 x 3
1.2 million
658,000

60 million
652 million



.
GoogleNet

R

GooglLeNet, 2014.

22 weight layers

Fully convolutional (no fully
connected layers)

Convolutions are broken down
into a bunch of smaller
convolutions

6.6% test error on ImageNet

(CQramadi at -l 2014AY
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.
GoogleNet

@ They were really aggressive about cutting the number of parameters.
@ Motivation: train the network on a large cluster, run it on a cell phone
@ Memory at test time is the big constraint.
@ Having lots of units is OK, since the activations only need to be stored
at training time (for backpropagation).
@ Parameters need to be stored both at training and test time, so these
are the memory bottleneck.
e How they did it
@ No fully connected layers (remember, these have most of the weights)
e Break down convolutions into multiple smaller convolutions (since this
requires fewer parameters total)

o GoogleNet has “only” 2 million parameters, compared with 60 million
for AlexNet

e This turned out to improve generalization as well. (Overfitting can still
be a problem, even with over a million images!)




Classification --- A brief history of ImageNet Competition

28% ~AlexNet, 8 layers

205 / ZF, 8 layers
VGG, 19 layers
/ / _GoogLeNet, 22 layers
b / n _ResNet, 152 layers
' ‘ ~(Ensemble)
.99 67% V4 SENet
e = 2 l.".'/"; """ f{:_-__'ii__-__f-l-u;n-a;l.er-n;r- --------------
i - . . (4]
d

100% accuracy and reliability not realistic

BN Traditional computer vision
N Deep learning computer vision

2010 2011 2012 2013 2014 2015 2016 2017

Observation 1: Deep models (mostly CNNs) dominate the task of
object recognition.
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Classification --- A brief history of ImageNet Competition

28% ~AlexNet, 8 layers
6%

" ZF, 8 layers

VGG, 19 layers
" GoogleNet, 22 layers

16%
ResNet, 152 layers

(Ensemble)
~ SENet

Human error

100% accuracy and reliability not realistic

BN Traditional computer vision
N Deep learning computer vision

2010 2011 2012 2013 2014 2015 2016 2017

Observation 2: The accuracy by CNNs improves every year and
even outperforms human performances.
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Classification --- A brief history of ImageNet Competition

28% ~AlexNet, 8 layers
26%
ZF, 8 layers
VGG, 19 layers
¥ / GooglLeNet, 22 layers
1 6% / § /
/ ResNet, 152 layers
‘ “(Ensemble)
13%79 /)
i i [ "4 f/'; """ R e s
l. N w220
shallow d

100% accuracy and reliability not realistic

BN Traditional computer vision
N Deep learning computer vision

2010 2011 2012 2013 2014 2015 2016 2017

Observation 3: The STOA CNNs are getting deeper and deeper.
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Classification --- A brief history of ImageNet Competition

28% ~AlexNet, 8 layers
6%

" ZF, 8 layers

VGG, 19 layers
" GoogleNet, 22 layers

16%
ResNet, 152 layers

(Ensemble)
~ SENet

Human error

100% accuracy and reliability not realistic

BN Traditional computer vision
N Deep learning computer vision

2010 2011 2012 2013 2014 2015 2016 2017

Observation 4: The performance of object recognition is so good
that they stopped the competition nowadays.
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Beyond Classification

@ The classification nets map the entire input image to a pre-defined class categories.
@ But there are more than just class labels in an image.

@ where is the foreground object? how many? what is in the background?

Horse

(PASCAL VOC 2012)
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Semantic Segmentation

@ Semantic segmentation, a natural extention of classification, focuses on making
dense classification of class labels for every pixel.
@ It is an important step towards complete scene understanding in compter vision.
# Semantic segmentation is a stepping stone for many of the high-level vision
tasks, such as object detection, Visual Question Answering (VQA).
@ A naive approach is to adapt the existing object classification conv nets for each

pixPl Thil-‘. \M'ﬁI‘L’C qllrnricino’hr U\J‘P"

(Fully Convolutional Networks, 2015)
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Semantic Segmentation

@ After the success of CNN classifiers, segmentation models quickly moved away
from hand-craft features and pipelines but instead use CNN as the main structure.

® Pre-trained ImageNet classification network serves as a building block for all the
state-of-the-art CNN-based segmentation models.

2013 2015 2018 ground truth

from left to wright (Li, et. al., (CSl), CVPR, 2013; Long, et. al., (FCN), CVPR 2015; Chen et. al., (DeepLab), PAMI 2018)
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R
CNN on HealthCare

@ CNN has also been widely used in processing medical images.

@ Pre-trained ImageNet classification network serves as a building block for most of
medical image segmentation/classification models.

Input Maodel Qutput
* Malignancy probability
* LUMAS risk bucket
Prior _ Current

j Cancer risk prediction I e Cancer localization :
Prior Current i b :
: ::  Cancer 1 H :
: 11 detection . b i :
i % - :

i ROl 2 :
Current i P p=— :

: :I Full-volume __g oc:m:unurumuuc:m:uuu'nas:::n
<. model

-

from: google Al: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed

tomography. Nature medicine, 2019.
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Supervised Pre-training and Transfer Learning

@ In practice, we will rarely train an image classifier from scratch.
o It is unlikely we will have millions of cleanly labeled images for our
specific datasets.
o If the dataset is a computer vision task, it is common to fine-tune a
pre-trained conv net on ImageNet or Openlmage.

@ Just like semantic segmentation tasks, we will fix most of the weights
in the pre-trained network. Only the weights in the last layer will be
randomly initialized and learnt on the current dataset/task.
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Transfer Learning : Fine-Tuning

Input A
1 Task A

Layer n
Transfer

AnB: Frozen Weights

Input B . N ‘I] Task B

( Back-propagation
b |
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Supervised Pre-training and Transfer Learning

@ When to fine-tune?
o How many training examples we have in the new dataset/task?

@ Fewer new examples: more weights from the pre-trained networks are
fixed.

o How similar is the new dataset to our pre-training dataset? Microspy
images v.s. natural images:

@ more fine-tuning is needed for dissimilar datasets.

o Learning rate for the fine-tuning stage is often much lower than the
learning rate used for training from scratch.
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N
Closing Thoughts

1. Convolutional Layers are the building blocks of computer vision
applications (e.g., object recognition/detection/segmentation)!

2. Convolutional Layers use tied weights and obtain translation
invariance.

3. CNNs (or its variants) are the go-to methods for many image-related
applications.

4. CNNs can be also interpreted as a feature/representation learning
method for images.

5. Transfer learning by fine-tuning is often used in training CNN:s.
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