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Al researchers allege that machine learning is alchemy

By Matthew Hutson | May. 3,2018, 11:15 AM

Ali Rahimi, a researcher in artificial intelligence (Al) at Google in San Francisco, California, took a
swipe at his field last December—and received a 40-second ovation for it. Speaking at an Al

Deep Learning: Alchemy or Science?

© alche'my

/"alkemé&/

. 1 Learn to pronounce

noun

the medieval forerunner of chemistry, based on the supposed transformation of matter. It was
concerned particularly with attempts to convert base metals into gold or to find a universal elixir.
"occult sciences, such as alchemy and astrology"
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Overview: Gradient Descent

@ Goal: we want to minimize a specific objective function (cost or loss):

o Step 2: Update the parameters:

0=0-avJ(0)

Source: https:/ /towards datascience.com/a-vis ual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b 10232 5c
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Overview: Learning Rate

@ The learning rate « is a hyperparameter we need to tune. Here are
the things that can go wrong in batch mode:

( S A,
N ﬂ- NN \ {: = .?‘\\
.__\\‘,‘ | < \\ \\. \ \‘\
AN \"\‘ N )\
|
. - 77 //,‘ ‘.\ — /
o too small: « too large: a much too large:
slow progress oscillations instability

@ Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1,0.03,0.01,...).
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Overview: Training Curves

@ To diagnose optimization problems,
it's useful to look at training curves:
plot the training cost as a function
of iteration.

@ Gotcha: use a fixed subset of the
training data to monitor the
training error. Evaluating on a training
different batch (e.g. the current ot
one) in each iteration adds a /ot of
noise to the curve!

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

good
convergence

e Gotcha: it's very hard to tell from
the training curves whether an
optimizer has converged. They can
reveal major problems, but they
can't guarantee convergence.
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Overview: Limitations of Gradient Descent

@ So far, the cost function J has been the average loss over the
training examples:

N
J(6) = ZJ“(O) Zc(y(x“),o),t“’)-
i:l

@ By linearity,
N
1 i
= Z v 7 (0)
i=1

@ Computing the gradient requires summing over all of the training
examples. This is known as batch training.

e Batch training is impractical if you have a large dataset (e.g. millions
of training examples)!
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Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

6 6—avye)

@ SGD can make significant progress before it has even looked at all the data!

@ Mathematical justification: if you sample a training example at random, the
stochastic gradient is an unbiased estimate of the batch gradient:

N
E; [vﬂ")(e)} = % Y vI0(e) = vI(6).
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Stochastic Gradient Descent

e Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downhill on average.

D ®

batch gradient descent stochastic gradient descent
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Trick 1.1: Mini-batch Gradient Descent

@ Problem: if we only look at one training example at a time, we can't
exploit efficient vectorized operations.

e Compromise approach: compute the gradients on a medium-sized
set of training examples, called a mini-batch.

@ Each entire pass over the dataset is called an epoch.

@ Stochastic gradients computed on larger mini-batches have smaller
variance:

52

Var
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oL
00;

i=1

@ The mini-batch size S is a hyperparameter. Typical values are 10 or
100.
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Trick 1.1: Mini-batch Gradient Descent

Let’s talk in codes:

for t in range(1, num_iters):
batch = get_batch()
loss = compute_loss(batch, w)
dw = compute_gradient(loss)

w —= alpha * dw
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Trick 1.2: Batch Size

@ The mini-batch size S is a hyperparameter that needs to be set.

o Large batches: converge in fewer weight updates because each

stochastic gradient is less noisy.
e Small batches: perform more weight updates per second because each

one requires less computation.
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Trick 1.2: Batch Size

@ The mini-batch size S is a hyperparameter that needs to be set.
o Large batches: converge in fewer weight updates because each

stochastic gradient is less noisy.
e Small batches: perform more weight updates per second because each

one requires less computation.
e Claim: If the wall-clock time were proportional to the number of
FLOPs, then S = 1 would be optimal.
e 100 updates with S = 1 requires the same FLOP count as 1 update

with S = 100.
e Rewrite minibatch gradient descent as a for-loop:
S=1 S=100
Fork =1;::+;100; For k =1, ..., 100:
) — 0x_1 — aVIH(6;_,) 6y — 01 — 2 VI R)(6)

o All else being equal, you'd prefer to compute the gradient at a fresher
value of 8. So S =1 is better.
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Batch Size

@ The reason we don't use S = 1 is that larger batches can take
advantage of fast matrix operations and parallelism.

@ Small batches: An update with S = 10 isn’'t much more expensive
than an update with S = 1.

e Large batches: Once S is large enough to saturate the hardware
efficiencies, the cost becomes linear in S.

e Cartoon figure, not drawn to scale:
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Since GPUs afford more parallelism, they saturate at a larger batch

batch size

batch size

size. Hence, GPUs tend to favor larger batch sizes.




-
Batch Size

@ The convergence benefits of larger batches also see diminishing returns.

@ Small batches: large gradient noise, so large benefit from increased batch size

@ Large batches: SGD approximates the batch gradient descent update, so no

further benefit from variance reduction.
Small Batch Large Batch

full batch
cost
N\

full batch Q
gradient

distribution \
of stochastic
gradients ~—a \ N
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(e) ResNet-50 on Open Images

(f) Transformer on LMI1B

@ Right: # iterations to reach target validation error as a function of batch size.

(Shallue et al., 2018)

Bo Wang
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Summary: Batch Size

@ Batch Size is a slider on the learning process.

e Small batch size gives a learning process that converges quickly at the
cost of noise in the training process.

o Large batch size gives a learning process that converges slowly with
accurate estimates of the error gradient.

@ Tips in practice
o A set of good default values to try: 32, 64, 128, 256...

e |t is a good idea to review learning curves of model validation error
against training time with different batch sizes when tuning the batch
size.

e Tune batch size and learning rate after tuning all other
hyper-parameters.

o Use better GPUs if you can.
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Trick 1.3: Initialization

* If two hidden units have exactly
the same bias and exactly the
same incoming and outgoing
weights, they will always get
exactly the same gradient.

— So they can never learn to be
different features.

— We break symmetry by
initializing the weights to
have small random values.

If a hidden unit has a big fan-in,
small changes on many of its
incoming weights can cause the
learning to overshoot.

— We generally want smaller
incoming weights when the
fan-in is big, so initialize the
weights to be proportional to
sgrt(fan-in).

Source: Geoffrey Hinton
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Trick 1.3: Initialization

When activation function is linear (or close to linear) :

|W = np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization |

“Xavier initialization”

[Glorot et al., 2010]
When activation function is Relu :

W = np.random.randn(fan _in, fan out) / np.sqrt(fan in/2) # layer initialization

He et al., 2015
| (note additional /2)

A better idea (if possible): Start with a pretrained model!
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Trick 1.3: Initialization

Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by KrahenbuUhl et al., 2015

All you need is a good init, Mishkin and Matas, 2015
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Trick 1.4: Learning Rate

@ In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

small learning rate large learning rate

‘)

e Typical strategy:

o Use a large learning rate early in training so you can get close to the
optimum
o Gradually decay the learning rate to reduce the fluctuations
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Trick 1.4: Learning Rate

* Guess an initial learning rate. * Towards the end of mini-batch
— If the error keeps getting worse learning it nearly always helps to
or oscillates wildly, reduce the turn down the learning rate.
learning rate. — This removes fluctuations in the
— If the error is falling fairly final weights caused by the
consistently but slowly, increase variations between mini-
batches.

the learning rate.

+ Write a simple program to automate  * Turn down the Iearning'rate when
this way of adjusting the learning the error stops decreasing.

rate.

Source: Geoffrey Hinton
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Learning Rate

@ Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.

reduce
learning rate

|

error

epoch
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Trick 1.4: Learning Rate

low learning rate

high learning rate

good learning rate

\

A

epoch

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:

a = aoe_kt

1/t decay:
a = ag /(1 + kt)

Tip in practice: Typically, a grid search involves picking
values approximately on a logarithmic scale, e.qg., a learning
rate taken within the set {.1, .01, 10-3, 10-4, 10-5}
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Trick 1.5: SGD with Momentum

The problem with SGD:

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with SGD?
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Trick 1.5: SGD with Momentum

The problem with SGD:

Suppose loss function is steep vertically but shallow horizontally:

=

Q: What is the trajectory along which we converge
towards the minimum with SGD?
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Trick 1.5: SGD with Momentum

The problem with SGD:

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with SGD? very slow progress
along flat direction, jitter along steep one
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Trick 1.5: SGD with Momentum

The intuition behind the momentum method

Imagine a ball on the error surface. The * It damps oscillations in directions of

location of the ball in the horizontal high curvature by combining
plane represents the weight vector. gradients with opposite signs.
— The ball starts off by following the ¢ It builds up speed in direction

gradient, but once it has velocity, it a gentle but consistent
no longer does steepest descent.

— Its momentum makes it keep going
in the previous direction.

Source: Geoffrey Hinton
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Trick 1.5: SGD with Momentum

Source: Kosta Derpanis
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Trick 1.5: SGD with Momentum

Source: Kosta Derpanis
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Trick 1.5: SGD with Momentum

Source: Kosta Derpanis

velocity
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Trick 1.5: SGD with Momentum

Source: Kosta Derpanis

velocity
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Trick 1.5: SGD with Momentum

Source: Kosta Derpanis

velocity . Wiil
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Trick 1.5: SGD with Momentum

Source: Kosta Derpanis

Let’s talk in codes:
VW )

betal 0.9

for t in range(1l, num_iters):
batch = get_batch()

loss = compute_loss(batch, w)

dw = compute_gradient(loss)

vw = betal x vw + (1 - betal) * dw
w —= alpha * vw

Bo Wang CSC413/2516 Lecture 8: Optimization &Gei




S
Trick 1.6: RMSProp (optional)

rmsprop: A mini-batch version of rprop Introduqed in a slide in
Geoff Hinton's Coursera
* rprop is equivalent to using the gradient but also dividing by the size of the class. lecture 6

gradient.

— The problem with mini-batch rprop is that we divide by a different number
for each mini-batch. So why not force the number we divide by to be very
similar for adjacent mini-batches?

* rmsprop: Keep a moving average of the squared gradient for each weight

2
¥ ¥ IE )
MeanSquare(w, t) =09 MeanSquare(w, t 1)+O.l( Aw(t)

* Dividing the gradient by \/MeanSquare(w, 1) makes the learning work much
better (Tijmen Tieleman, unpublished).

Cited by several papers as: [52] T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.,
2012.
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RMSProp (optional)

Let’s talk in codes:

moment2 = 0
beta2 = 0.9
c = 10e-8

for t in range(1, num_iters):
batch = get_batch()
loss compute_loss(batch, w)

dw = compute_gradient(loss)
moment2 = beta2xmoment2 + (1 - beta2)skdwkdw

w —= alpha x dw / (sqrt(moment2) + c)
CSC413/’2516 Lecture 8: Optimization &Gei
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Trick 1.7: Adam = Momentum + RMSProp (optional)

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Diederik P. Kingma® Jimmy Lei Ba*
University of Amsterdam, OpenAl University of Toronto
dpkingma@openai.com Jjimmy@psi.utoronto.ca
ABSTRACT

We introduce Adam, an algorithm for first-order gradient-based optimization of
stochastic objective functions, based on adaptive estimates of lower-order mo-
ments. The method is straightforward to implement, is computationally efficient,
has little memory requirements, is invariant to diagonal rescaling of the gradients,
and is well suited for problems that are large in terms of data and/or parameters.
The method is also appropriate for non-stationary objectives and problems with
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Trick 1.7: Adam = Momentum + RMSProp (optional)

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Diederik P. Kingma® Jimmy Lei Ba*
University of Amsterdam, OpenAl University of Toronto
dpkingma@openai.com Jjimmy@psi.utoronto.ca
ABSTRACT

We introduce Adam, an algorithm for first-order gradient-based optimization of
stochastic objective functions, based on adaptive estimates of lower-order mo-
ments. The method is straightforward to implement, is computationally efficient,
has little memory requirements, is invariant to diagonal rescaling of the gradients,
and is well suited for problems that are large in terms of data and/or parameters.
The method is also appropriate for non-stationary objectives and problems with
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Trick 1.7: Adam = Momentum + RMSProp (optional)

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Diederik P. Kingma® Jimmy Lei Ba*
University of Amsterdam, OpenAl University of Toronto
dpkingmaRopenai.com Jimmy@psi.utoronto.ca
ABSTRACT

We introduce Adam, an algorithm for first-order gradient-based optimization of
stochastic objective functions, based on adaptive estimates of lower-order mo-
ments. The method is straightforward to implement, is computationally efficient,
has little memory requirements, is invariant to diagonal rescaling of the gradients,
and is well suited for problems that are large in terms of data and/or parameters.
The method is also appropriate for non-stationary objectives and problems with

@ Adam combines Momentum and RMSProp
e May not converge to optimal solution

® Works extremely well in practice! (60k+ citations)
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Adam = Momentum + RMSProp (optional)
Let’s talk in codes:

mgngié = 8 Adam (Partial)
betal = 0.9

beta2 = 0.999

c = 10e-8

for t in range(1, num_iters):
batch = get_batch()
loss compute_loss(batch, w)

dw = compute_gradient(loss) ﬂ

momentl = betalxmomentl + (1 — betal)xdw

moment2 = beta2xmoment2 + (1 - beta2)xdwxdw
CRMSProp >

w —= alpha x momentl / (sqrt(moment2) + c)
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Adam = Momentum + RMSProp (optional)
Let’s talk in codes:

momentl = 0

moment2 = 0 Adam (Full)
betal = 0.9

beta2 = 0.999

c = 10e-8

for t in range(1l, num_iters):
batch = get_batch()
loss compute_loss(batch, w)

dw = compute_gradient(loss)

(momentl = betalxmomentl + (1 — betal)*xdw |
(moment2 = betaZ2xmoment2 + (1 — betalZ)*xdwxdw
C EI\/ISProp D)
unbiasl = momentl / (1 — betalxxt) o oo
unbias2 = moment2 / (1 — beta2kxt) | ~ 0"
w —= alpha * unbiasl / (sqrt(unbias2) + c)
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A toy example

Optimizer Comparison

SDG

SGD with Momentum
AdaGrad

RMSprop

Adam



Take-away: Babysit the learning process

Problem

Diagnostics

Workarounds

incorrect gradients
local optima

slow progress
instability
oscillations
fluctuations

dead /saturated units
ill-conditioning

finite differences

(hard)

slow, linear training curve
cost increases

fluctuations in training curve
fluctuations in training curve
activation histograms

(hard)

fix them, or use autodiff
random restarts

increase &, momentum
decrease «

decrease «; momentum
decay «; iterate averaging
initial scale of W; RelLU
normalization; momentum;
Adam; second-order opt.
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Take-away: Good practice in learning process

@ Tune the batch size using grid search by monitoring the training and
validation curves

@ Tune the initial learning rate using grid search by monitoring the
training and validation curves

@ Use adaptive learning rate decay
@ Choose a good initialization

@ Adam and SGD with momentum are good default optimization
methods
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Optimization



-
Let's take a break!

e We've focused so far on how to optimize neural nets — how to get
them to make good predictions on the training set.

@ How do we make sure they generalize to data they haven't seen
before?

e Even though the topic is well studied, it's still poorly understood.
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Generalization

Recall: overfitting and underfitting

We'd like to minimize the generalization error, i.e. error on novel examples.
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Generalization

e Training and test error as a function of # training examples and #

parameters:
A A

test

error test
error

training
i training
error
3 >
# training examples # parameters
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Our Second Bag of Tricks

@ How can we train a model that's complex enough to model the
structure in the data, but prevent it from overfitting? l.e., how to
achieve low bias and low variance?

@ Our bag of tricks

data augmentation

reduce the number of paramters
weight decay

early stopping
ensembles (combine predictions of different models)

stochastic regularization (e.g. dropout)

@ The best-performing models on most benchmarks use some or all of
these tricks.

® & © & ¢ ¢
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Trick 2.1: Data Augmentation

@ The best way to improve generalization is to collect more data!

@ Suppose we already have all the data we're willing to collect. We can
augment the training data by transforming the examples. This is
called data augmentation.

e Examples (for visual recognition)

e translation

o horizontal or vertical flip

e rotation

e smooth warping

e noise (e.g. flip random pixels)

@ Only warp the training, not the test, examples.

@ The choice of transformations depends on the task. (E.g. horizontal
flip for object recognition, but not handwritten digit recognition.)
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Trick 2.1: Data Augmentation

Typical Image Augmentation

(w Original Image
w De-texturized

De-colorized

Symmetry Rotation

A3
- Data Augmentation

Edge Enhanced

Original
Salient Edge Map

\ w ;“/\ Flip/Rotate
o

4

Source: Sourav Kumar
CSC413/2516 Lecture 8: Optimization &Gel
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https://medium.com/@sauravkumarsct?source=post_page-----aa1913468722--------------------------------

-
Trick 2.1: Data Augmentation

Time series data augmentation

e

(a) Original

(b) Jittering

(c) Scaling

(d) Magnitude Warping

(e) Rotation

(f) Permutation

(g) Window Slice

(h) Time Warping

(1) Window Warping
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Trick 2.1: Data Augmentation

Data Augmentation for NLP

This article will focus on summarizing
data augmentation techniques in NLP.

Synonym
Replacement

This write-up will focus on summarizing
data augmentation methods in NLP.

Source: Shahul ES
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Trick 2.1: Data Augmentation

Data Augmentation for NLP

This article will focus on summarizing
data augmentation techniques in NLP.

Random
Insertion

This article will focus on write-up summarizing
data augmentation techniques in NLP methods.

Source: Shahul ES
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Trick 2.1: Data Augmentation

Data Augmentation for NLP

This article will focus on summarizing
data augmentation techniques in NLP.

Random Swap

This techniques will focus on summarizing data
augmentation article in NLP.

Source: Shahul ES
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Trick 2.1: Data Augmentation

Data Augmentation for NLP

original

augmented

English

I

I have no time

I do not have time

English

I

Back-Translation

French
gﬂ‘ 18
je n'ai pas le temps
translate to
english

Source: Shahul ES
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Trick 2.1: Data Augmentation

Caution!
é Data Augmentation
Rotate 180°
Label: 6 New Label: 9

Ground truth label: 6
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Trick 2.2: Reducing the Number of Parameters

@ Can reduce the number of layers or the number of paramters per layer.

@ Adding a linear bottleneck layer is another way to reduce the number of
parameters:

100 units 100 units
A

1000 connections

10,000 10 units
connections
T 1000 connections
100 units 100 units

@ The first network is strictly more expressive than the second (i.e. it can
represent a strictly larger class of functions). (Why?)

@ Remember how linear layers don't make a network more expressive? They
might still improve generalization.
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Trick 2.2: Reducing the Number of Parameters

An example of bottle-neck structure

Zibiod
FIX

Z|

)
\,ﬁ""\\" \
LN \

Encoder Decoder Gason Chen's Blog
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Trick 2.3: Weight Decay

e We've already seen that we can regularize a network by penalizing
large weight values, thereby encouraging the weights to be small in

magnitude.

A 2
J

@ We saw that the gradient descent update can be interpreted as
weight decay:

N OR
W(—W—Q(a—w-}-/\a—w)
=w—a(a—j+/\w>

ow
=(1—a)\)w—ag—;z
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Weight Decay

Why we want weights to be small:

-—62.0 -15 -10 -05 00 05 10 15 20

y=0.1> +002¢* 4 075 = x®=Dar- 2
y = —7.2x° + 10.4x* 4+ 24.5x> — 37.9x% — 3.6x + 12

The red polynomial overfits. Notice it has really large coefficients.
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Weight Decay

Why we want weights to be small:

@ Suppose inputs x; and x» are nearly identical. The following two
networks make nearly the same predictions:

1 1 -9 11
@ But the second network might make weird predictions if the test
distribution is slightly different (e.g. x; and x, match less closely).
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Weight Decay

@ The geometric picture:
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Weight Decay

@ There are other kinds of regularizers which encourage weights to be small,
e.g. sum of the absolute values.

@ These alternative penalties are commonly used in other areas of machine learning,
but less commonly for neural nets.

@ Regularizers differ by how strongly they prioritize making weights exactly zero,
vs. not being very large.

wa

(© (
A f;>
: w VvV

v L2 regularization L1 regularization

0 ’R:Zu*;" RZZ'“':‘I

— Hinton, Coursera lectures

— Bishop, Pattern Recognition and Machine Learning
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Trick 2.4: Early Stopping

@ We don't always want to find a global (or even local) optimum of our
cost function. It may be advantageous to stop training early.

validation
error

training
error

# epochs

e Early stopping: monitor performance on a validation set, stop training
when the validtion error starts going up.
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Early Stopping

@ A slight catch: validation error fluctuates because of stochasticity in
the updates.

validation
error

training
error

# epochs

@ Determining when the validation error has actually leveled off can be
tricky.
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Early Stopping

@ Why does early stopping work?

e Weights start out small, so it takes time for them to grow large.
Therefore, it has a similar effect to weight decay.
e If you are using sigmoidal units, and the weights start out small, then
the inputs to the activation functions take only a small range of values.
e Therefore, the network starts out approximately linear, and gradually
becomes more nonlinear (and hence more powerful).
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Trick 2.5: Ensembles

e If a loss function is convex (with respect to the predictions), you have
a bunch of predictions, and you don't know which one is best, you are
always better off averaging them.

LOuyr + -+ dvyn, t) < MLy, t) + -+ InL(yn, t) for N > o,z,\, =1

@ This is true no matter where they came from (trained neural net,
random guessing, etc.). Note that only the loss function needs to be
convex, not the optimization problem.

@ Examples: squared error, cross-entropy, hinge loss

e If you have multiple candidate models and don't know which one is
the best, maybe you should just average their predictions on the test
data. The set of models is called an ensemble.

@ Averaging often helps even when the loss is nonconvex (e.g. 0-1 loss).
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Ensembles

@ Some examples of ensembles:

e Train networks starting from different random initializations. But this
might not give enough diversity to be useful.

e Train networks on differnet subsets of the training data. This is called
bagging.

e Train networks with different architectures or hyperparameters, or even
use other algorithms which aren't neural nets.

e Ensembles can improve generalization quite a bit, and the winning
systems for most machine learning benchmarks are ensembles.

@ But they are expensive, and the predictions can be hard to interpret.
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Trick 2.6: Stochastic Regularization

@ For a network to overfit, its computations need to be really precise. This
suggests regularizing them by injecting noise into the computations, a
strategy known as stochastic regularization.

@ Dropout is a stochastic regularizer which randomly deactivates a subset of

the units (i.e. sets their activations to zero).

o o #(z;) with probability 1 — p
710 with probability p,
where p is a hyperparameter.

@ Equivalently,
hj = mj - o(z),

where m; is a Bernoulli random variable, independent for each hidden unit.
® Backprop rule:

z =h;-m;-¢/(z)
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Trick 2.6: Stochastic Regularization

PN () active unit
“\ _/h'. i". .)'. N
— =) inactive unit
. X “ /)‘. ’ /}v oS /'
X L O— y
3, { J)r‘ \_} )
B, )

plll=00 pltl=00 pPl=05 plBl=00 pl=025
Source: Peter Skalski
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Stochastic Regularization

e Dropout can be seen as training an ensemble of 2P different
architectures with shared weights (where D is the number of units):

g ONEONNO

0 R
ONNONNO

A5 B % &
() () 2

Base network

oYy
©)

+lg | &

o O Pelge

Ensemble of subnetworks

— Goodfellow et al., Deep Learning
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Dropout

Dropout at test time:

@ Most principled thing to do: run the network lots of times
independently with different dropout masks, and average the
predictions.

o Individual predictions are stochastic and may have high variance, but
the averaging fixes this.

@ In practice: don't do dropout at test time, but multiply the weights
by 1—p
e Since the weights are on 1 — p fraction of the time, this matches their
expectation.

CSC413/2516 Lecture 8: Optimization &Gei



Dropout as an Adaptive Weight Decay
Consider a linear regression, y()) = ZJ- wjxj("). The inputs are droped out

half of the time: y(1) = 2% mj('i)Wj’ﬁ(i)v m ~ Bern(0.5). E,[y()] = y().

N
EnlT] = 55 2 Enl(7?) — )2

i=1
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Dropout as an Adaptive Weight Decay

Consider a linear regression, y()) = ZJ- ijj(i). The inputs are droped out

half of the time: () =2 > mj(.i)mxj-><1.(i), m ~ Bern(0.5). E,[7)] = y().

N
EnlT] = 5 3l — )2

i=1
The bias-variance decomposition of the squared error gives:

N N
1 (] i 1 (i
Enld] = 550 > (Enlf] = t0)2 + =23 Vara[7)
i=1 i=1
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Dropout as an Adaptive Weight Decay

; . ; (i) _ o li)
Consider a linear regression, y"/ =3 . WjX;

half of the time: y(/) =2 2 mj(.i)M/J-)S(i), m ~ Bern(0.5). E,[7()] =y

. The inputs are droped out

N
1 wlif i

Enl7] = 517 D Enl(7) — )2

i=1 Tips: Var[m_j] = p (1-p)

The bias-variance decomposition of the squared error g|ves

N
1 .
ey B (0] — ()2 i)
En[J] = N ;(Em[y — tV Z\/}um[y
Assume weights, inputs and masks are independent and E[x] = 0.
N
1 ~(i)
0l = 5y 2 (Enly ) - €0 Z >~ Varml2m{’xVw; |
=1 =1 j

S (B EI
= — Em )7(’ il ) Var|[x W
o1y O (Enl b
=1
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Stochastic Regularization

@ Dropout can help performance quite a bit, even if you're already using

weight decay.
@ Lots of other stochastic regularizers have been proposed:
o Batch normalization (mentioned last week for its optimization benefits)

also introduces stochasticity, thereby acting as a regularizer.
e The stochasticity in SGD updates has been observed to act as a

regularizer, helping generalization.
@ Increasing the mini-batch size may improve training error at the

expense of test error!
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Take-away: Our Bag of Tricks

@ Techniques we just covered:

e data augmentation

e reduce the number of paramters

e weight decay

e early stopping

o ensembles (combine predictions of different models)
e stochastic regularization (e.g. dropout)

@ The best-performing models on most benchmarks use some or all of
these tricks.
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Revisit the Controversy

Your Thoughts?

Deep Learning: Alchemy or Science?

“The engineering artifacts have almost always preceded the theoretical
understanding,” said LeCun. “Understanding (theoretical or otherwise) is a good
thing. It’s the very purpose of many of us in the NIPS community. But another
important goal is inventing new methods, new techniques, and yes, new tricks.”
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