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Assignment 2

Release Date: 2024-09-25

Deadline: Thursday, Oct. 17th, at 11:59pm.

Submission: You must submit two files through MarkUs: (1) a PDF file containing your writeup,
titled a2-writeup.pdf, and (2) your code file a2-code.ipynb. There will be sections in the note-
book for you to write your responses. Your writeup must be typed. Make sure that the relevant
outputs (e.g. print gradients() outputs, plots, etc.) are included and clearly visible.
See the syllabus on the course website for detailed policies. You may ask questions about the
assignment on Piazza. Note that 10% of the assignment mark (worth 2 pts) may be removed for
lack of neatness.

You may notice that some questions are worth 0 pt, which means we will not mark them in this
Assignment. Feel free to skip them if you are busy. However, you are expected to see some of them
in the midterm.
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1 Optimization

This week, we will continue investigating the properties of optimization algorithms, focusing on
stochastic gradient descent and adaptive gradient descent methods. For a refresher on optimization,
refer to: https://uoft-csc413.github.io/2023/assets/slides/lec03.pdf.

We will continue using the linear regression model established in Homework 1. Given n pairs
of input data with d features and scalar labels (xi, ti) ∈ Rd × R, we want to find a linear model
f(x) = ŵTx with ŵ ∈ Rd such that the squared error on training data is minimized. Given a data
matrix X ∈ Rn×d and corresponding labels t ∈ Rn, the objective function is defined as:

L =
1

n
∥Xŵ − t∥22 (1)

1.1 Mini-Batch Stochastic Gradient Descent (SGD)

Mini-batch SGD performs optimization by taking the average gradient over a mini-batch, denoted
B ∈ Rb×d, where 1 < b ≪ n. Each training example in the mini-batch, denoted xj ∈ B, is
randomly sampled without replacement from the data matrix X. Assume that X is full rank.
Where L denotes the loss on xj , the update for a single step of mini-batch SGD at time t with
scalar learning rate η is:

wt+1 ← wt −
η

b

∑
xj∈B

∇wtL(xj ,wt) (2)

Mini-batch SGD iterates by randomly drawing mini-batches and updating model weights using the
above equation until convergence is reached.

1.1.1 Minimum Norm Solution [2pt]

Recall Question 1.3.2 from Homework 1. For an overparameterized linear model, gradient descent
starting from zero initialization finds the unique minimum norm solution w∗ such that Xw∗ = t.
Let w0 = 0, d > n. Assume mini-batch SGD also converges to a solution ŵ such that Xŵ = t.
Show that mini-batch SGD solution is identical to the minimum norm solution w∗ obtained by
gradient descent, i.e., ŵ = w∗.

Hint: Be more specific as to what other solutions? Or is xj or B contained in span of X? Do
the update steps of mini-batch SGD ever leave the span of X?

1.2 Adaptive Methods

We now consider the behavior of adaptive gradient descent methods. In particular, we will inves-
tigate the RMSProp method. Let wi denote the i-th parameter. A scalar learning rate η is used.
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At time t for parameter i, the update step for RMSProp is shown by:

wi,t+1 = wi,t −
η

√
vi,t + ϵ

∇wi,tL(wi,t) (3)

vi,t = β(vi,t−1) + (1− β)(∇wi,tL(wi,t))
2 (4)

We begin the iteration at t = 0, and set vi,−1 = 0. The term ϵ is a fixed small scalar used for
numerical stability. The momentum parameter β is typically set such that β ≥ 0.9 Intuitively,
RMSProp adapts a separate learning rate in each dimension to efficiently move through badly
formed curvatures (see lecture slides/notes).

1.2.1 Minimum Norm Solution [1pt]

Consider the overparameterized linear model (d > n) for the loss function defined in Section 1.
Assume the RMSProp optimizer converges to a solution. Provide a proof or counterexample for
whether RMSProp always obtains the minimum norm solution.

Hint: Compute a simple 2D case. Let x1 = [2, 1], w0 = [0, 0], t = [2].

1.2.2 [0pt]

Consider the result from the previous section. Does this result hold true for other adaptive methods
(Adagrad, Adam) in general? Why might making learning rates independent per dimension be
desirable?

2 Gradient-based Hyper-parameter Optimization

In this problem, we will implement a simple toy example of gradient-based hyper-parameter opti-
mization.

Often in practice, hyper-parameters are chosen by trial-and-error based on a model evaluation
criterion. Instead, gradient-based hyper-parameter optimization computes gradient of the evalua-
tion criterion w.r.t. the hyper-parameters and uses this gradient to directly optimize for the best
set of hyper-parameters. For this problem, we will optimize for the learning rate of gradient descent
in a regularized linear regression problem.

Specifically, given n pairs of input data with d features and scalar label (xi, ti) ∈ Rd × R, we
wish to find a linear model f(x) = ŵ⊤x with ŵ ∈ Rd and a L2 penalty, λ∥ŵ2

2∥, that minimizes
the squared error of prediction on the training samples. λ is a hyperparameter that modulates the
impact of the L2 regularization on the loss function. Using the concise notation for the data matrix
X ∈ Rn×d and the corresponding label vector t ∈ Rn, the squared error loss can be written as:

L̃ =
1

n
∥Xŵ − t∥22 + λ∥ŵ∥22.
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Starting with an initial weight parametersw0, gradient descent (GD) updatesw0 with a learning
rate η for t number of iterations. Let’s denote the weights after t iterations of GD as wt, the loss as
Lt, and its gradient as ∇wt . The goal is the find the optimal learning rate by following the gradient
of Lt w.r.t. the learning rate η.

2.1 Computation Graph

2.1.1 [0.5pt]

Consider a case of 2 GD iterations. Draw the computation graph to obtain the final loss L̃2 in
terms of w0,∇w0L̃0, L̃0,w1, L̃1,∇w1L̃1,w2, λ̃ and η.

2.1.2 [0.5pt]

Then, consider a case of t iterations of GD. What is the memory complexity for the forward-
propagation in terms of t? What is the memory complexity for using the standard back-propagation
to compute the gradient w.r.t. the learning rate, ∇ηL̃t in terms of t?
Hint : Express your answer in the form of O in terms of t.

2.1.3 [0pt]

Explain one potential problem for applying gradient-based hyper-parameter optimization in more
realistic examples where models often take many iterations to converge.

2.2 Optimal Learning Rates

In this section, we will take a closer look at the gradient w.r.t. the learning rate. To simplify the
computation for this section, consider an unregularized loss function of the form L = 1

n∥Xŵ− t∥22.
Let’s start with the case with only one GD iteration, where GD updates the model weights from
w0 to w1.

2.2.1 [1pt]

Write down the expression of w1 in terms of w0, η, t and X. Then use the expression to derive
the loss L1 in terms of η.
Hint: If the expression gets too messy, introduce a constant vector a = Xw0 − t

2.2.2 [0pt]

Determine if L1 is convex w.r.t. the learning rate η.
Hint: A function is convex if its second order derivative is positive
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2.2.3 [1pt]

Write down the derivative of L1 w.r.t. η and use it to find the optimal learning rate η∗ that
minimizes the loss after one GD iteration. Show your work.

2.3 Weight decay and L2 regularization

Although well studied in statistics, L2 regularization is usually replaced with explicit weight decay
in modern neural network architectures:

wi+1 = (1− λ)wi − η∇Li(X) (5)

In this question you will compare regularized regression of the form L̃ = 1
n∥Xŵ− t∥22 + λ̃∥ŵ∥22

with unregularized loss, L = 1
n∥Xŵ − t∥22, accompanied by weight decay (equation 5).

2.3.1 [0.5pt]

Write down two expressions for w1 in terms of w0, η, t, λ, λ̃, and X. The first one using L̃, the
second with L and weight decay.

2.3.2 [0.5pt]

How can you express λ̃ (corresponding to L2 loss) so that it is equivalent to λ (corresponding to
weight decay)?
Hint : Think about how you can express λ̃ in terms of λ and another hyperparameter.

2.3.3 [0pt]

Adaptive gradient update methods like RMSprop (equation 4) modulate the learning rate for each
weight individually. Can you describe how L2 regularization is different from weight decay when
adaptive gradient methods are used? In practice it has been shown that for adaptive gradients
methods weight decay is more successful than l2 regularization.

3 Convolutional Neural Networks

The last set of questions aims to build basic familiarity with convolutional neural networks (CNNs).
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3.1 Convolutional Filters [0.5pt]

Given the input matrix I and filter J shown below, compute I ∗ J, the output of the convolution
operation (as defined in lecture 4). Assume zero padding is used such that the input and output
are of the same dimension. What feature does this convolutional filter detect?

I =


0 0 0 0 0
0 0 1 1 1
1 1 1 1 0
0 1 1 1 0
0 0 1 0 0

 J =

 0 −1 0
−1 5 −1
0 −1 0

 I ∗ J =


? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?


3.2 Size of Conv Nets [1pt]

CNNs provides several advantages over fully connected neural networks (FCNNs) when applied to
image data. In particular, FCNNs do not scale well to high dimensional image data, which you will
demonstrate below. Consider the following CNN architecture on the left:

The input image has dimension 32× 32 and is RGB (three channel). For ease of computation, all
convolutional layers use 3 × 3 kernels and the output channels of each layer are described in the
images. This means that the number after the hyphen specifies the number of output channels
or units of a layer (e.g. Conv3-64 layer has 64 output channels). Assume zero padding is used in
convolutional layers. Each max pooling layer has a filter size of 2×2 and a stride of 2. Furthermore,
ignore all bias terms.

We consider an alternative architecture, shown on the right, which replaces convolutional layers
with fully connected (FC) layers. Assume the fully connected layers do not change the output shape
of inputs. For both the CNN architecture and the FCNN architecture, compute the total number
of neurons in the network, and the total number of trainable parameters. You should report four
numbers in total. Finally, name one disadvantage of having more trainable parameters.
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3.3 Receptive Fields [0.5pt]

The receptive field of a neuron in a CNN is the area of the image input that can affect the neuron
(i.e. the area a neuron can ‘see’). For example, a neuron in a 3× 3 convolutional layer is computed
from an input area of 3× 3 of the input, so it’s receptive field is 3× 3. However, as we go deeper
into the CNN, the receptive field increases. One helpful resource to visualize receptive fields can
be found at: https://distill.pub/2019/computing-receptive-fields/.

List 3 things that can affect the size of the receptive field of a neuron and briefly explain your
answers.
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Programming Assignment

Introduction

This assignment will focus on the applications of convolutional neural networks in various image
processing tasks. The starter code is provided as a Python Notebook on Colab (https://colab.
research.google.com/drive/1cfbod9TisilEyZQ8cJtoUqBke6sqjlo_?usp=sharing). First, we
will train a convolutional neural network for a task known as image colourization. Given a greyscale
image, we will predict the colour at each pixel. This is a difficult problem for many reasons, one
of which being that it is ill-posed: for a single greyscale image, there can be multiple, equally valid
colourings. In the second half of the assignment, we will perform fine-tuning on a pre-trained object
detection model.

Image Colourization as Classification

In this section, we will perform image colourization using two convolutional neural networks (Figure
1a and b). Given a grayscale image, we wish to predict the color of each pixel. We have provided
a subset of 24 output colours, selected using k-means clustering1. The colourization task will be
framed as a pixel-wise classification problem, where we will label each pixel with one of the 24
colours. For simplicity, we measure distance in RGB space. This is not ideal but reduces the
software dependencies for this assignment.

We will use the CIFAR-10 data set, which consists of images of size 32x32 pixels. For most
of the questions we will use a subset of the dataset. The data loading script is included with the
notebooks, and should download automatically the first time it is loaded.

Helper code for Section 4 is provided in a2-code.ipynb, which will define the main training
loop as well as utilities for data manipulation. Run the helper code to setup for this question and
answer the following questions.

4 Pooling and Upsampling

4.1 [0.5pt]

Complete the model PoolUpsampleNet, following the diagram in Figure 1a. Use the PyTorch layers
nn.Conv2d, nn.ReLU, nn.BatchNorm2d, nn.Upsample2, and nn.MaxPool2d. Your CNN should
be configurable by parameters kernel, num in channels, num filters, and num colours. In
the diagram, num in channels, num filters and num colours are denoted NIC, NF and NC
respectively. Use the following parameterizations (if not specified, assume default parameters):

1https://en.wikipedia.org/wiki/K-means_clustering
2https://machinethink.net/blog/coreml-upsampling/

8

https://colab.research.google.com/drive/1cfbod9TisilEyZQ8cJtoUqBke6sqjlo_?usp=sharing
https://colab.research.google.com/drive/1cfbod9TisilEyZQ8cJtoUqBke6sqjlo_?usp=sharing
https://en.wikipedia.org/wiki/K-means_clustering
https://machinethink.net/blog/coreml-upsampling/


CSC413/2516 Fall 2024 with Prof. Colin Raffel and Bo Wang Assignment 2
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(a) PoolUpsampleNet
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(b) ConvTransposeNet
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(c) UNet

Figure 1: Three network architectures that we will be using for image colourization. Numbers
inside square brackets denote the shape of the tensor produced by each layer: BS: batch size,
NIC: num in channels, NF: num filters, NC: num colours. For this assignment, we will skip
the UNet architecture until future lectures.
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• nn.Conv2d: The number of input filters should match the second dimension of the input
tensor (e.g. the first nn.Conv2d layer has NIC input filters). The number of output filters
should match the second dimension of the output tensor (e.g. the first nn.Conv2d layer has
NF output filters). Set kernel size to parameter kernel. Set padding to the padding variable
included in the starter code.

• nn.BatchNorm2d: The number of features should match the second dimension of the output
tensor (e.g. the first nn.BatchNorm2d layer has NF features).

• nn.Upsample: Use scaling factor = 2.

• nn.MaxPool2d: Use kernel size = 2.

Note: grouping layers according to the diagram (those not separated by white space) using the
nn.Sequential containers will aid implementation of the forward method.

4.2 [0.5pt]

Run main training loop of PoolUpsampleNet. This will train the CNN for a few epochs using the
cross-entropy objective. It will generate some images showing the trained result at the end. Do
these results look good to you? Why or why not?

4.3 [1.0pt]

Compute the number of weights, outputs, and connections in the model, as a function of NIC, NF
and NC. Compute these values when each input dimension (width/height) is doubled. Report all
6 values.

Note:

1. Please ignore biases when answering the questions.

2. Please ignore nn.BatchNorm2d when answering the number of weights, outputs and connec-
tions, but we still accept answers that do.

Hint:

1. nn.Upsample does not have parameters (this will help you answer the number of weights).

2. Think about when the input width and height are both doubled, how will the dimension of
feature maps in each layer change? If you know this, you will know how dimension scaling
will affect the number of outputs and connections.
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5 Strided and Transposed Dilated Convolutions [2 pts]

For this part, instead of using nn.MaxPool2d layers to reduce the dimensionality of the tensors, we
will increase the step size of the preceding nn.Conv2d layers, and instead of using nn.Upsample

layers to increase the dimensionality of the tensors, we will use transposed convolutions. Transposed
convolutions aim to apply the same operations as convolutions but in the opposite direction. For
example, while increasing the stride from 1 to 2 in a convolution forces the filters to skip over
every other position as they slide across the input tensor, increasing the stride from 1 to 2 in a
transposed convolution adds “empty” space around each element of the input tensor, as if reversing
the skipping over every other position done by the convolution. We will be using a dilation

rate of 1 for the transposed convolution. Excellent visualizations of convolutions and transposed
convolutions have been developed by Dumoulin and Visin [2018] and can be found on their GitHub
page3.

5.1 [0.5pt]

Complete the model ConvTransposeNet, following the diagram in Figure 1b. Use the PyTorch
layers nn.Conv2d, nn.ReLU, nn.BatchNorm2d and nn.ConvTranspose2d. As before, your CNN
should be configurable by parameters kernel, dilation, num in channels, num filters, and
num colours. Use the following parameterizations (if not specified, assume default parameters):

• nn.Conv2d: The number of input and output filters, and the kernel size, should be set in the
same way as Section 4. For the first two nn.Conv2d layers, set stride to 2 and set padding
to 1.

• nn.BatchNorm2d: The number of features should be specified in the same way as for Section
4.

• nn.ConvTranspose2d: The number of input filters should match the second dimension of the
input tensor. The number of output filters should match the second dimension of the output
tensor. Set kernel size to parameter kernel. Set stride to 2, set dilation to 1, and set
both padding and output padding to 1.

5.2 [0.5pt]

Train the model for at least 25 epochs using a batch size of 100 and a kernel size of 3. Plot the
training curve, and include this plot in your write-up.

3https://github.com/vdumoulin/conv_arithmetic
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5.3 [0.5pt]

How do the results compare to Section 4? Does the ConvTransposeNet model result in lower
validation loss than the PoolUpsampleNet? Why may this be the case?

5.4 [0.5pt]

How would the padding parameter passed to the first two nn.Conv2d layers, and the padding and
output padding parameters passed to the nn.ConvTranspose2d layers, need to be modified if we
were to use a kernel size of 4 or 5 (assuming we want to maintain the shapes of all tensors shown
in Figure 1b)? Note: PyTorch documentation for nn.Conv2d4 and nn.ConvTranspose2d5 includes
equations that can be used to calculate the shape of the output tensors given the parameters.

5.5 [0pt]

Re-train a few more ConvTransposeNet models using different batch sizes (e.g., 32, 64, 128, 256,
512) with a fixed number of epochs. Describe the effect of batch sizes on the training/validation
loss, and the final image output quality. You do not need to attach the final output images.

6 Skip Connections

A skip connection in a neural network is a connection which skips one or more layer and connects
to a later layer. We will learn more substantially about skip connections and the UNet architecture
(Figure 1c) in future slides and assignments.

4https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
5https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
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