
CSC413/2516 Fall 2024 with Professor Colin Raffel & Professor Bo Wang Assignment 4

Assignment 4

Version: 1.3
Version Release Date: November 19, 2024
Changes by Version:

• (v1.1)
Q1.4: Removed extra softmax in α definition and fixed dimensions of WQ,WK ,WV matrices.
Q2: Fixed missing 1

8 factor in big Ω notation.

• (v1.2)
Q2: Relaxed the question to allow for an arbitrary constant factor c factor, fixed matrix M ’s
dimensions being reversed, and updated the hint.
Q1.4.1: Updated the kernel w = [−1, 0, 1]T → w = [2, 0, 1]T , making the question actually
solvable.

• (v1.3)
Q1.4: Included condition that the input sequence x is positive for all elements.

Deadline: Thursday, November 28th, at 11:59pm.

Submission: You must submit two files through MarkUs: (1) a PDF file containing your writeup,
titled a4-writeup.pdf, and (2) your code file a4-gnn.ipynb, a4-unet.ipynb. There will be sec-
tions in the notebook for you to write your responses. Your writeup must be typed. Make sure
that the relevant outputs (e.g. print gradients() outputs, plots, etc.) are included and clearly
visible.
See the syllabus on the course website for detailed policies. You may ask questions about the
assignment on Piazza. Note that 10% of the assignment mark (worth 2 pts) may be removed for
lack of neatness.

1

CSC413/2516 Fall 2024 with Professor Colin Raffel & Professor Bo Wang Assignment 4

Written Assignment

What you have to submit for this part

For reference, here is everything you need to hand in for the first half of the PDF report a4-writeup.pdf.

• Problem 1: 1.1.2, 1.2.1, 1.3.1, 1.3.2, 1.4.1, 1.4.2

• Problem 2: 2.1.1

2

CSC413/2516 Fall 2024 with Professor Colin Raffel & Professor Bo Wang Assignment 4

1 RNNs and Self Attention

For any successful deep learning system, choosing the right network architecture is as important
as choosing a good learning algorithm. In this question, we will explore how various architectural
choices can have a significant impact on learning. We will analyze the learning performance from
the perspective of vanishing /exploding gradients as they are backpropagated from the final layer
to the first.

1.1 Warmup: A Single Neuron RNN

Consider an n layered fully connected network that has scalar inputs and outputs. For now, assume
that all the hidden layers have a single unit, and that the weight matrices are set to 1 (because
each hidden layer has a single unit, the weight matrices have a dimensionality of R1×1).

1.1.1 Effect of Activation - ReLU [0pt]

Lets say we’re using the ReLU activation. Let x be the input to the network and let f : R1 → R1

be the function the network is computing. Do the gradients necessarily have to vanish or explode
as they are backpropagated? Answer this by showing that 0 ≤ |∂f(x)∂x | ≤ 1.

1.1.2 Effect of Activation - Different weights [0.5pt]

Solve the problem in 1.1.1 by assuming now the weights are not 1. You can assume that the i-th
hidden layer has weight wi. Do the gradients necessarily have to vanish or explode as they are
backpropagated? Answer this by deriving a similar bound as in Sec 1.1.1 for the magnitude of the
gradient.

1.2 Matrices and RNN

We will now analyze the recurrent weight matrices under Singular Value Decomposition. SVD is
one of the most important results in all of linear algebra. It says that any real matrix M ∈ Rmxn

can be written as M = UΣV T where U ∈ Rmxm and V ∈ Rnxn are square orthogonal matrices, and
Σ ∈ Rmxn is a rectangular diagonal matrix with nonnegative entries on the diagonal (i.e. Σii ≥ 0
for i ∈ {1, . . . ,min(m,n)} and 0 otherwise). Geometrically, this means any linear transformation
can be decomposed into a rotation/flip, followed by scaling along orthogonal directions, followed
by another rotation/flip.

1.2.1 Gradient through RNN [0.5pt]

Let say we have a very simple RNN-like architecture that computes xt+1 = sigmoid(Wxt). You
can view this architecture as a deep fully connected network that uses the same weight matrix at
each layer. Suppose the largest singular value of the weight matrix is σmax(W) = 1

4 . Show that
the largest singular value of the input-output Jacobian has the following bound:

0 ≤ σmax(
∂xn
∂x1

) ≤ (
1

16
)n−1

(Hint: if C = AB, then σmax(C) ≤ σmax(A)σmax(B). Also, the input-output Jacobian is the
multiplication of layerwise Jacobians).

3

CSC413/2516 Fall 2024 with Professor Colin Raffel & Professor Bo Wang Assignment 4

1.3 Self-Attention

In a self-attention layer (using scaled dot-product attention), the matrix of outputs is computed
as:

Attention(Q,K, V) = softmax

(
QK⊤
√
dk

)
V

where Q,K, V ∈ Rn×d are the query, key, and value matrices, n is the sequence length, and dm
is the embedding dimension.

1.3.1 Complexity of Self-Attention [0.5pt]

Recal from Lecture 8, the total cost for scaled dot-product attention scales quadratically with the
sequence length n, i.e., O

(
n2

)
. We can generalize the attention equation for any similarity function

sim() to the following:

αi =

∑n
j=1 sim(Qi,Kj)Vj∑n
j=1 sim(Qi,Kj)

(1.1)

where the subscript of a matrix represents the i-th row as a vector. This is equivalent to the

Softmax attention if we substitute sim(q, k) = exp(q
T k√
dk
). Note that for this generalized equation

to be a valid attention equation, the only constraint on sim() is that it need to be non-negative,
which is true for all kernel functions k(x, y) = ϕ(x)Tϕ(y), for some feature mapping ϕ(). Show that
by applying kernel functions, attention can be calculated with linear complexity (i.e., O(n)).

Hint: Sub in the kernel function for the similarity function into Eq 1.1. Group the terms based
on their subscript (i.e., i and j).

1.3.2 Linear Attention with SVD [0.5pt]

It has been empirically shown in Transformer models that the context mapping matrix P =

softmax
(
QK⊤
√
dk

)
often has a low rank. Show that if the rank of P is k and we already have access

to the SVD of P , then it is possible to compute self-attention in O(nkd) time.

1.3.3 Linear Attention by Projecting [0pt]

Suppose we ignore the Softmax and scaling and let P = QK⊤ ∈ Rn×n. Assume P is rank k. Show
that there exist two linear projection matrices C,D ∈ Rk×n such that PV = Q(CK)⊤DV and the
right hand side can be computed in O(nkd) time. Hint: Consider using SVD in your proof.

4

CSC413/2516 Fall 2024 with Professor Colin Raffel & Professor Bo Wang Assignment 4

1.4 Relative Attention

Relative attention We implement relative attention, as in traditional Softmax attention, how-
ever we now include a new term that allows us to reweight the attention scores based on the
distance between inputs. Now assume that we are working with a single-headed local self-attention
mechanism on a one-dimensional sequence x ∈ Rn s.t. xi ≥ 0 for all i and WQ,WK ,WV ∈ R.

αi,j(Q,K, p) =

(
QiKj√

dk
+ pi−j

)
where (pk) is a sequence of scalars and Q,K ∈ Rn. Note that here we allow the index k to take on
negative values.

ReltativeAttention(Q,K, V, p) = softmax(α(Q,K, p))V

And our attention layer is simply:

RelAttnLayer(x;WQ,WK ,WV , p) = ReltativeAttention(WQx,WKx,WV x, p)

1.4.1 Implement a 1D Convolution [0.5pts]

Implement the following 1D-convolution with kernel w = [2, 0, 1]T ,as using the RelAttnLayer.
Specifically, you need to implement:

Conv1D(x;w)i =
1∑

j=−1

xi+jwj+2

You may ignore the behavior of your implementation in the edge cases when i > n − 1 and
i < 1. Please specify the p, WQ, WK , and WV you used and argue why they closely approximate
this function in the relevant range.

1.4.2 Implement Max Pooling [0.5pts]

Now we will use RelAttnLayer to approximate 1d max-pooling with a stride of 1 and a window size
of 2k + 1 around the current input. Recall that max pooling with a stride 1 and width of 2k + 1
is simply:

MaxPool(x)i = max
−k≤m≤k

xm+i

Again you may ignore the edge cases in your solutions i > n− k and i < k + 1. Please specify the
p, WQ, WK , and WV you used and argue why they approximately implement this function in the
relevant range.

5

https://en.wikipedia.org/wiki/Convolution#Discrete_convolution

CSC413/2516 Fall 2024 with Professor Colin Raffel & Professor Bo Wang Assignment 4

2 Johnson-Lindenstrauss Lemma and Almost Orthogonal Vectors

While a large network might train on billions of facts and word associations, it manages to store
and retrieve this information from relatively low-dimensional embeddings. It is hypothesized that
these sparse features of the data are stored in the form of many almost-orthogonal directions in the
model’s latent states [Elhage et al., 2022]. We will show that in addition to giving us insight into
how the distance between two vectors can be preserved in a low-dimensional space, the Johnson-
Lindenstrauss lemma suggests that a great many sparse features can be linearly encoded and
retrieved from a relatively small continuous vector space!

Johnson-Lindenstrauss Lemma (JL Lemma) For any ϵ ∈ (0, 1) and any set of n points
X = {x1, . . . , xn} ⊂ Rd and k ∈ N if k ≥ 8(lnn)/ϵ2, then there exists a matrix M ∈ Rk×d such that
for all xi, xj ∈ X:

(1− ϵ)||xi − xj ||22 ≤ ||Mxi −Mxj ||22 ≤ (1 + ϵ)||xi − xj ||22

2.1 Almost orthogonal vectors

We will consider two vectors δ almost-orthogonal iff |x⊤i xj | ≤ δ.

2.1.1 Show there are exponentially many almost-orthogonal vectors [1pts]

Show that for some c > 0 there are Ω(e
nδ2

c) many almost-orthogonal unit vectors in Rn.
In other words, show that for some arbitrary constant c > 0 and any n ∈ N, δ > 0 there is a finite

set of vectors U ⊂ Rn s.t., |U | ∈ Ω(e
nδ2

c), ∀u ∈ U , ||u||2 = 1 and ∀ui, uj ∈ U if ui ̸= uj then
|u⊤i uj | ≤ δ.

Hints: Take ϵ = 1
2δ and use the JL-lemma on the vectors X = {0, e1, ..., ed} where e1, ..., ed are

the standard basis vectors. You will also need to use the fact that for two vectors x, y, ||x− y||22 =
||x||22 + ||y||22 − 2x⊤y.

6

CSC413/2516 Fall 2024 with Professor Colin Raffel & Professor Bo Wang Assignment 4

Programming Assignment

What you have to submit for this part

For reference, here is everything you need to hand in:

• This is the second half of your PDF report a4-writeup.pdf. Please include the solutions
to the following problems. You may choose to export a4-gnn.ipynb, a4-unet.ipynb as a
PDF and attach it to the first half of a4-writeup.pdf.

– Question 3: 3.1, 3.2, 3.3, 3.4, 3.5, 3.6

– Question 4: 4.1, 4.2

• Your code file a4-gnn.ipynb, a4-unet.ipynb

7

CSC413/2516 Fall 2024 with Professor Colin Raffel & Professor Bo Wang Assignment 4

3 Graph Convolution Networks[5pt]

For this part of the assignment, you will implement the vanilla version of Graph Convolution
Networks (GCN) Kipf and Welling [2016] and Graph Attention Networks (GAT) Velicković et al.
[2018].

Basics of GCN:

Recall from the lecture, the goal of a GCN is to learn a function of signals/features on a graph
G = (V,E), which takes as inputs:

1. the input features of each node, xi ∈ RF (in matrix form: X ∈ R|V |×F)

2. some information about the graph structure, typically the adjacency matrix A

Each convolutional layer can be written as H(l+1) = f(H(l), A), for some function f(). The f()
we are using for this assignment is in the form of f(H(l), A) = σ(D̂−1/2ÂD̂−1/2H(l)W (l)), where
Â = A + Identity and D̂ is diagonal node degree matrix (D̂−1Â normalizes Â such that all rows
sum to one). Let Ã = D̂−1/2ÂD̂−1/2. The GCN we will implement takes two convolution layers,
Z = f(X,A) = softmax(Ã ·Dropout(ReLU(ÃXW (0))) ·W (1))

Basics of GAT:

Graph Attention Network (GAT) is a novel convolution-style neural network. It operates on graph-
structured data and leverages masked self-attentional layers. In this assignment, we will implement
the graph attention layer.

Dataset:

The dataset we used for this assignment is Cora Sen et al. [2008]. Cora is one of standard citation
network benchmark dataset (just like MNIST dataset for computer vision tasks). It that consists
of 2708 scientific publications and 5429 links. Each publication is classified into one of 7 classes.
Each publication is described by a word vector (length 1433) that indicates the absence/presence
of the corresponding word. This is used as the features of each node for our experiment. The task
is to perform node classification (predict which class each node belongs to).

Experiments:

Open [GNN notebook link] on Colab and answer the following questions.

1. [1pt] Implementation of Graph Convolution Layer

Complete the code for GraphConvolution() Class

2. [1pt] Implementation of Graph Convolution Network

Complete the code for GCN() Class

3. [0.5pt] Train your Graph Convolution Network

After implementing the required classes, now you can train your GCN. You can play with the
hyperparameters in args.

8

https://colab.research.google.com/github/uoft-csc413/2023/blob/master/assets/assignments/gnn.ipynb

CSC413/2516 Fall 2024 with Professor Colin Raffel & Professor Bo Wang Assignment 4

4. [1.5pt] Implementation of Graph Attention Layer

Complete the code for GraphAttentionLayer() Class

5. [0.5pt] Train your Graph Attention Network

After implementing the required classes, now you can train your GAT. You can play with the
hyperparameters in args.

6. [0.5pt] Compare your models

Compare the evaluation results for Vanilla GCN and GAT. Comment on the discrepancy in
their performance (if any) and briefly explain why you think it’s the case (in 1-2 sentences).

Deliverables

Create a section in your report called Graph Convolution Networks. Add the following:

• Screenshots of your GraphConvolution, GCN implementations. Highlight the lines you’ve
added.

• Screenshots of your GCN training output, you can just screenshot the last 10 epochs with
test set results.

• Screenshots of your GraphAttentionLayer implementations. Highlight the lines you’ve added.

• Screenshots of your GAT training output, you can just screenshot the last 10 epochs with
test set results.

• Your response to the written component of question 3.6. Your analysis should not exceed 3
sentences.

4 U-Nets [2.5 pts]

For this part of the assignment we will continue where we left off in assignment 2 and implement a
more effective architecture for image segmentation. A U-Net Ronneberger et al. [2015] that consists
of convolutional auto encoder with skip connections.

You can access the notebook here https://colab.research.google.com/drive/1FoLWfyEmBbkCCf_
a6Qw0mLmJN-8GkZp1?usp=sharing as always create a local copy of the notebook in you’re own drive
and connect to a GPU instance to run.

Marks

• [1.5 pts] Implement the U-Net Complete the code in the Up, Down and UNet classes.

• [1 pts] Train the U-Net

Train the U-net with and without its skip connections enabled and report on the results.

9

https://colab.research.google.com/drive/1FoLWfyEmBbkCCf_a6Qw0mLmJN-8GkZp1?usp=sharing
https://colab.research.google.com/drive/1FoLWfyEmBbkCCf_a6Qw0mLmJN-8GkZp1?usp=sharing
https://colab.research.google.com/drive/1FoLWfyEmBbkCCf_a6Qw0mLmJN-8GkZp1?usp=sharing
https://colab.research.google.com/drive/1FoLWfyEmBbkCCf_a6Qw0mLmJN-8GkZp1?usp=sharing

CSC413/2516 Fall 2024 with Professor Colin Raffel & Professor Bo Wang Assignment 4

Deliverables

Create a section in your report called U-Nets. Add the following:

• Screenshots of your UNet, Up and Down implementations. Highlight the lines you’ve added.

• Screenshots of your final segmentation and your training curves with skip connections enabled
and disabled.

• Your response to the written component of question 5.2. Your analysis should not exceed 3
sentences.

References

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. CoRR, abs/1609.02907, 2016. URL http://arxiv.org/abs/1609.02907.

Petar Velicković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rJXMpikCZ. accepted as poster.

Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina
Eliassi-Rad. Collective classification in network data. AI Magazine, 29(3):93–106, 2008. URL
http://www.cs.iit.edu/~ml/pdfs/sen-aimag08.pdf.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings,
part III 18, pages 234–241. Springer, 2015.

10

http://arxiv.org/abs/1609.02907
https://openreview.net/forum?id=rJXMpikCZ
http://www.cs.iit.edu/~ml/pdfs/sen-aimag08.pdf

	RNNs and Self Attention
	Warmup: A Single Neuron RNN
	Effect of Activation - ReLU [0pt]
	Effect of Activation - Different weights blue [0.5pt]

	Matrices and RNN
	Gradient through RNN blue [0.5pt]

	Self-Attention
	Complexity of Self-Attention blue [0.5pt]
	Linear Attention with SVD blue [0.5pt]
	Linear Attention by Projecting [0pt]

	Relative Attention
	Implement a 1D Convolution blue [0.5pts]
	Implement Max Pooling blue [0.5pts]

	Johnson-Lindenstrauss Lemma and Almost Orthogonal Vectors
	Almost orthogonal vectors
	Show there are exponentially many almost-orthogonal vectors blue [1pts]

	Graph Convolution Networks[5pt]
	U-Nets [2.5 pts]

